Transhumanismus

A Universal Vaccine Against Any Viral Variant? A New Study Suggests It’s Possible

Singularity HUB - 22 Duben, 2024 - 22:28

From Covid boosters to annual flu shots, most of us are left wondering: Why so many, so often?

There’s a reason to update vaccines. Viruses rapidly mutate, which can help them escape the body’s immune system, putting previously vaccinated people at risk of infection. Using AI modeling, scientists have increasingly been able to predict how viruses will evolve. But they mutate fast, and we’re still playing catch up.

An alternative strategy is to break the cycle with a universal vaccine that can train the body to recognize a virus despite mutation. Such a vaccine could eradicate new flu strains, even if the virus has transformed into nearly unrecognizable forms. The strategy could also finally bring a vaccine for the likes of HIV, which has so far notoriously evaded decades of efforts.

This month, a team from UC California Riverside, led by Dr. Shou-Wei Ding, designed a vaccine that unleashed a surprising component of the body’s immune system against invading viruses.

In baby mice without functional immune cells to ward off infections, the vaccine defended against lethal doses of a deadly virus. The protection lasted at least 90 days after the initial shot.

The strategy relies on a controversial theory. Most plants and fungi have an innate defense against viruses that chops up their genetic material. Called RNA interference (RNAi), scientists have long debated whether the same mechanism exists in mammals—including humans.

“It’s an incredible system because it can be adapted to any virus,” Dr. Olivier Voinnet at the Swiss Federal Institute of Technology, who championed the theory with Ding, told Nature in late 2013.

A Hidden RNA Universe

RNA molecules are usually associated with the translation of genes into proteins.

But they’re not just biological messengers. A wide array of small RNA molecules roam our cells. Some shuttle protein components through the cell during the translation of DNA. Others change how DNA is expressed and may even act as a method of inheritance.

But fundamental to immunity are small interfering RNA molecules, or siRNAs. In plants and invertebrates, these molecules are vicious defenders against viral attacks. To replicate, viruses need to hijack the host cell’s machinery to copy their genetic material—often, it’s RNA. The invaded cells recognize the foreign genetic material and automatically launch an attack.

During this attack, called RNA interference, the cell chops the invading viruses’ RNA genome into tiny chunks–siRNA. The cell then spews these viral siRNA molecules into the body to alert the immune system. The molecules also directly grab onto the invading viruses’ genome, blocking it from replicating.

Here’s the kicker: Vaccines based on antibodies usually target one or two locations on a virus, making them vulnerable to mutation should those locations change their makeup. RNA interference generates thousands of siRNA molecules that cover the entire genome—even if one part of a virus mutates, the rest is still vulnerable to the attack.

This powerful defense system could launch a new generation of vaccines. There’s just one problem. While it’s been observed in plants and flies, whether it exists in mammals has been highly controversial.

“We believe that RNAi has been antiviral for hundreds of millions of years,” Ding told Nature in 2013. “Why would we mammals dump such an effective defense?”

Natural Born Viral Killers

In the 2013 study in Science, Ding and colleagues suggested mammals also have an antiviral siRNA mechanism—it’s just being repressed by a gene carried by most viruses. Dubbed B2, the gene acts like a “brake,” smothering any RNA interference response from host cells by destroying their ability to make siRNA snippets.

Getting rid of B2 should kick RNA interference back into gear. To prove the theory, the team genetically engineered a virus without a functioning B2 gene and tried to infect hamster cells and immunocompromised baby mice. Called Nodamura virus, it’s transmitted by mosquitoes in the wild and is often deadly.

But without B2, even a lethal dose of the virus lost its infectious power. The baby mice rapidly generated a hefty dose of siRNA molecules to clear out the invaders. As a result, the infection never took hold, and the critters—even when already immunocompromised—survived.

“I truly believe that the RNAi response is relevant to at least some viruses that infect mammals,” said Ding at the time.

New-Age Vaccines

Many vaccines contain either a dead or a living but modified version of a virus to train the immune system. When faced with the virus again, the body produces T cells to kill off the target, B cells that pump out antibodies, and other immune “memory” cells to alert against future attacks. But their effects don’t always last, especially if a virus mutates.

Rather than rallying T and B cells, triggering the body’s siRNA response offers another type of immune defense. This can be done by deleting the B2 gene in live viruses. These viruses can be formulated into a new type of vaccine, which the team has been working to develop, relying on RNA interference to ward off invaders. The resulting flood of siRNA molecules triggered by the vaccine would, in theory, also provide some protection against future infection.

“If we make a mutant virus that cannot produce the protein to suppress our RNAi [RNA interference], we can weaken the virus. It can replicate to some level, but then loses the battle to the host RNAi response,” Ding said in a press release about the most recent study.  “A virus weakened in this way can be used as a vaccine for boosting our RNAi immune system.”

In the study, his team tried the strategy against Nodamura virus by removing its B2 gene.

The team vaccinated baby and adult mice, both of which were genetically immunocompromised in that they couldn’t mount T cell or B cell defenses. In just two days, the single shot fully protected the mice against a deadly dose of virus, and the effect lasted over three months.

Viruses are most harmful to vulnerable populations—infants, the elderly, and immunocompromised individuals. Because of their weakened immune systems, current vaccines aren’t always as effective. Triggering siRNA could be a life-saving alternative strategy.

Although it works in mice, whether humans respond similarly remains to be seen. But there’s much to look forward to. The B2 “brake” protein has also been found in lots of other common viruses, including dengue, flu, and a family of viruses that causes fever, rash, and blisters.

The team is already working on a new flu vaccine, using live viruses without the B2 protein. If successful, the vaccine could potentially be made as a nasal spray—forget the needle jab. And if their siRNA theory holds up, such a vaccine might fend off the virus even as it mutates into new strains. The playbook could also be adapted to tackle new Covid variants, RSV, or whatever nature next throws at us.

This vaccine strategy is “broadly applicable to any number of viruses, broadly effective against any variant of a virus, and safe for a broad spectrum of people,” study author Dr. Rong Hai said in the press release. “This could be the universal vaccine that we have been looking for.”

Image Credit: Diana Polekhina / Unsplash

Kategorie: Transhumanismus

Make Music A Full Body Experience With A “Vibro-Tactile” Suit

Futurism - Enhanced Humans - 27 Září, 2018 - 17:09
SYNESTHETES

Tired: Listening to music.
Wired: Feeling the music.

A mind-bending new suit straps onto your torso, ankles and wrists, then uses actuators to translate audio into vivid vibration. The result: a new way for everyone to experience music, according to its creators. That’s especially exciting for people who have trouble hearing.

THE FEELIES

The Music: Not Impossible suit was created by design firm Not Impossible Labs and electronics manufacturing company Avnet. The suit can create sensations to go with pre-recorded music, or a “Vibrotactile DJ” can adjust the sensations in real time during a live music event.”

Billboard writer Andy Hermann tried the suit out, and it sounds like a trip.

“Sure enough, a pulse timed to a kickdrum throbs into my ankles and up through my legs,” he wrote. “Gradually, [the DJ] brings in other elements: the tap of a woodblock in my wrists, a bass line massaging my lower back, a harp tickling a melody across my chest.”

MORE ACCESSIBLE

To show the suit off, Not Impossible and Avnet organized a performance this past weekend by the band Greta Van Fleet at the Life is Beautiful Festival in Las Vegas. The company allowed attendees to don the suits. Mandy Harvey, a deaf musician who stole the show on America’s Got Talent last year, talked about what the performance meant to her in a video Avnet posted to Facebook.

“It was an unbelievable experience to have an entire audience group who are all experiencing the same thing at the same time,” she said. “For being a deaf person, showing up at a concert, that never happens. You’re always excluded.”

READ MORE: Not Impossible Labs, Zappos Hope to Make Concerts More Accessible for the Deaf — and Cooler for Everyone [Billboard]

More on accessible design: New Tech Allows Deaf People To Sense Sounds

The post Make Music A Full Body Experience With A “Vibro-Tactile” Suit appeared first on Futurism.

Kategorie: Transhumanismus

“Synthetic Skin” Could Give Prosthesis Users a Superhuman Sense of Touch

Futurism - Enhanced Humans - 20 Září, 2018 - 21:37
IN THE FEELS

Today’s prosthetics can give people with missing limbs the ability to do almost anything — run marathons, climb mountains, you name it. But when it comes to letting those people feel what they could with a natural limb, the devices, however mechanically sophisticated, invariably fall short.

Now researchers have created a “synthetic skin” with a sense of touch that not only matches the sensitivity of natural skin, but in some cases even exceeds it. Now the only challenge is getting that information back into the wearer’s nervous system.

UNDER PRESSURE

When something presses against your skin, your nerves receive and transmit that pressure to the brain in the form of electrical signals.

To mimic that biological process, the researchers suspended a flexible polymer, dusted with magnetic particles, over a magnetic sensor. The effect is like a drum: Applying even the tiniest amount of pressure to the membrane causes the magnetic particles to move closer to the sensors, and they transmit this movement electronically.

The research, which could open the door to super-sensitive prosthetics, was published Wednesday in the journal Science Robotics.

SPIDEY SENSE TINGLING

Tests shows that the skin can sense extremely subtle pressure, such as a blowing breeze, dripping water, or crawling ants. In some cases, the synthetic skin responded to pressures so gentle that natural human skin wouldn’t be able to detect them.

While the sensing ability of this synthetic skin is remarkable, the team’s research doesn’t address how to transmit the signals to the human brain. Other scientists are working on that, though, so eventually this synthetic skin could give prosthetic wearers the ability to feel forces even their biological-limbed friends can’t detect.

READ MORE: A Skin-Inspired Tactile Sensor for Smart Prosthetics [Science Robotics]

More on synthetic skin: Electronic Skin Lets Amputees Feel Pain Through Their Prosthetics

The post “Synthetic Skin” Could Give Prosthesis Users a Superhuman Sense of Touch appeared first on Futurism.

Kategorie: Transhumanismus

People Are Zapping Their Brains to Boost Creativity. Experts Have Concerns.

Futurism - Enhanced Humans - 19 Září, 2018 - 21:56
BRAIN BOOST

There’s a gadget that some say can help alleviate depression and enhance creativity. All you have to do is place a pair of electrodes on your scalp and the device will deliver electrical current to your brain. It’s readily available on Amazon or you can even make your own.

But in a new paper published this week in the Creativity Research Journal, psychologists at Georgetown University warned that the practice is spreading before we have a good understanding of its health effects, especially since consumers are already buying and building unregulated devices to shock them. They also cautioned that the technique, which scientists call transcranial electrical stimulation (tES), could have adverse effects on the brains of young people.

“There are multiple potential concerns with DIY-ers self-administering electric current to their brains, but this use of tES may be inevitable,” said co-author Adam Green in a press release. “And, certainly, anytime there is risk of harm with a technology, the scariest risks are those associated with kids and the developing brain”

SHOCK JOCK

Yes, there’s evidence that tES can help patients with depression, anxiety, Parkinson’s disease, and other serious conditions, the Georgetown researchers acknowledge.

But that’s only when it’s administered by a trained health care provider. When administering tES at home, people might ignore safety directions, they wrote, or their home-brewed devices could deliver unsafe amounts of current. And because it’s not yet clear what effects of tES might be on the still-developing brains of young people, the psychologists advise teachers and parents to resist the temptation to use the devices to encourage creativity among children.

The takeaway: tES is likely here to stay, and it may provide real benefits. But for everyone’s sake, consumer-oriented tES devices should be regulated to protect users.

READ MORE: Use of electrical brain stimulation to foster creativity has sweeping implications [Eurekalert]

More on transcranial electrical stimulation: DARPA’s New Brain Device Increases Learning Speed by 40%

The post People Are Zapping Their Brains to Boost Creativity. Experts Have Concerns. appeared first on Futurism.

Kategorie: Transhumanismus

Military Pilots Can Control Three Jets at Once via a Neural Implant

Futurism - Enhanced Humans - 19 Září, 2018 - 16:25
MIND CONTROL

The military is making it easier than ever for soldiers to distance themselves from the consequences of war. When drone warfare emerged, pilots could, for the first time, sit in an office in the U.S. and drop bombs in the Middle East.

Now, one pilot can do it all, just using their mind — no hands required.

Earlier this month, DARPA, the military’s research division, unveiled a project that it had been working on since 2015: technology that grants one person the ability to pilot multiple planes and drones with their mind.

“As of today, signals from the brain can be used to command and control … not just one aircraft but three simultaneous types of aircraft,” Justin Sanchez, director of DARPA’s Biological Technologies Office, said, according to Defense One.

THE SINGULARITY

Sanchez may have unveiled this research effort at a “Trajectory of Neurotechnology” session at DARPA’s 60th anniversary event, but his team has been making steady progress for years. Back in 2016, a volunteer equipped with a brain-computer interface (BCI) was able to pilot an aircraft in a flight simulator while keeping two other planes in formation — all using just his thoughts, a spokesperson from DARPA’s Biological Technologies Office told Futurism.

In 2017, Copeland was able to steer a plane through another simulation, this time receiving haptic feedback — if the plane needed to be steered in a certain direction, Copeland’s neural implant would create a tingling sensation in his hands.

NOT QUITE MAGNETO

There’s a catch. The DARPA spokesperson told Futurism that because this BCI makes use of electrodes implanted in and on the brain’s sensory and motor cortices, experimentation has been limited to volunteers with varying degrees of paralysis. That is: the people steering these simulated planes already had brain electrodes, or at least already had reason to undergo surgery.

To try and figure out how to make this technology more accessible and not require surgical placement of a metal probe into people’s brains, DARPA recently launched the NExt-Generation Nonsurgical Neurotechnology (N3) program. The plan is to make a device with similar capabilities, but it’ll look more like an EEG cap that the pilot can take off once a mission is done.

“The envisioned N3 system would be a tool that the user could wield for the duration of a task or mission, then put aside,” said Al Emondi, head of N3, according to the spokesperson. “I don’t like comparisons to a joystick or keyboard because they don’t reflect the full potential of N3 technology, but they’re useful for conveying the basic notion of an interface with computers.”

READ MORE: It’s Now Possible To Telepathically Communicate with a Drone Swarm [Defense One]

More on DARPA research: DARPA Is Funding Research Into AI That Can Explain What It’s “Thinking”

The post Military Pilots Can Control Three Jets at Once via a Neural Implant appeared first on Futurism.

Kategorie: Transhumanismus

Lab-Grown Bladders Can Save People From a Lifetime of Dialysis

Futurism - Enhanced Humans - 12 Září, 2018 - 22:54
ONE IN A MILLION TEN

Today, about 10 people on Earth have bladders they weren’t born with. No, they didn’t receive bladder transplants — doctors grew these folks new bladders using the recipients’ own cells.

On Tuesday, the BBC published a report on the still-nascent procedure of transplanting lab-grown bladders. In it, the publication talks to Luke Massella, who underwent the procedure more than a decade ago. Massella was born with spina bifida, which carries with it a risk of damage to the bladder and urinary tract. Now, he lives a normal life, he told the BBC.

“I was kind of facing the possibility I might have to do dialysis [blood purification via machine] for the rest of my life,” he said. “I wouldn’t be able to play sports, and have the normal kid life with my brother.”

All that changed after Anthony Atala, a surgeon at Boston Children’s Hospital, decided he was going to grow a new bladder for Massella.

ONE NEW BLADDER, COMING UP!

To do that, Atala first removed a small piece of Massella’s own bladder. He then removed cells from this portion of bladder and multiplied them in a petri dish. Once he had enough cells, he coated a scaffold with the cells and placed the whole thing in a temperature controlled, high oxygen environment. After a few weeks, the lab-created bladder was ready for transplantation into Massella.

“So it was pretty much like getting a bladder transplant, but from my own cells, so you don’t have to deal with rejection,” said Massella.

The number of people with lab-grown bladders might still be low enough to count on your fingers, but researchers are making huge advances in growing everything from organs to skin in the lab. Eventually, we might reach a point when we can replace any body part we need to with a perfect biological match that we built ourselves.

READ MORE: “A New Bladder Made From My Cells Gave Me My Life Back” [BBC]

More on growing organs: The FDA Wants to Expedite Approval of Regenerative Organ Therapies

The post Lab-Grown Bladders Can Save People From a Lifetime of Dialysis appeared first on Futurism.

Kategorie: Transhumanismus
Syndikovat obsah