Transhumanismus

This AI Just Designed a More Precise CRISPR Gene Editor for Human Cells From Scratch

Singularity HUB - 25 Duben, 2024 - 22:25

CRISPR has revolutionized science. AI is now taking the gene editor to the next level.

Thanks to its ability to accurately edit the genome, CRISPR tools are now widely used in biotechnology and across medicine to tackle inherited diseases. In late 2023, a therapy using the Nobel Prize-winning tool gained approval from the FDA to treat sickle cell disease. CRISPR has also enabled CAR T cell therapy to battle cancers and been used to lower dangerously high cholesterol levels in clinical trials.

Outside medicine, CRISPR tools are changing the agricultural landscape, with projects ongoing to engineer hornless bulls, nutrient-rich tomatoes, and livestock and fish with more muscle mass.

Despite its real-world impact, CRISPR isn’t perfect. The tool snips both strands of DNA, which can cause dangerous mutations. It also can inadvertently nip unintended areas of the genome and trigger unpredictable side effects.

CRISPR was first discovered in bacteria as a defense mechanism, suggesting that nature hides a bounty of CRISPR components. For the past decade, scientists have screened different natural environments—for example, pond scum—to find other versions of the tool that could potentially increase its efficacy and precision. While successful, this strategy depends on what nature has to offer. Some benefits, such as a smaller size or greater longevity in the body, often come with trade-offs like lower activity or precision.

Rather than relying on evolution, can we fast-track better CRISPR tools with AI?

This week, Profluent, a startup based in California, outlined a strategy that uses AI to dream up a new universe of CRISPR gene editors. Based on large language models—the technology behind the popular ChatGPT—the AI designed several new gene-editing components.

In human cells, the components meshed to reliably edit targeted genes. The efficiency matched classic CRISPR, but with far more precision. The most promising editor, dubbed OpenCRISPR-1, could also precisely swap out single DNA letters—a technology called base editing—with an accuracy that rivals current tools.

“We demonstrate the world’s first successful editing of the human genome using a gene editing system where every component is fully designed by AI,” wrote the authors in a blog post.

Match Made in Heaven

CRISPR and AI have had a long romance.

The CRISPR recipe has two main parts: A “scissor” Cas protein that cuts or nicks the genome and a “bloodhound” RNA guide that tethers the scissor protein to the target gene.

By varying these components, the system becomes a toolbox, with each setup tailored to perform a specific type of gene editing. Some Cas proteins cut both strands of DNA; others give just one strand a quick snip. Alternative versions can also cut RNA, a type of genetic material found in viruses, and can be used as diagnostic tools or antiviral treatments.

Different versions of Cas proteins are often found by searching natural environments or through a process called direct evolution. Here, scientist rationally swap out some parts of the Cas protein to potentially boost efficacy.

It’s a highly time-consuming process. Which is where AI comes in.

Machine learning has already helped predict off-target effects in CRISPR tools. It’s also homed in on smaller Cas proteins to make downsized editors easier to deliver into cells.

Profluent used AI in a novel way: Rather than boosting current systems, they designed CRISPR components from scratch using large language models.

The basis of ChatGPT and DALL-E, these models launched AI into the mainstream. They learn from massive amounts of text, images, music, and other data to distill patterns and concepts. It’s how the algorithms generate images from a single text prompt—say, “unicorn with sunglasses dancing over a rainbow”—or mimic the music style of a given artist.

The same technology has also transformed the protein design world. Like words in a book, proteins are strung from individual molecular “letters” into chains, which then fold in specific ways to make the proteins work. By feeding protein sequences into AI, scientists have already fashioned antibodies and other functional proteins unknown to nature.

“Large generative protein language models capture the underlying blueprint of what makes a natural protein functional,” wrote the team in the blog post. “They promise a shortcut to bypass the random process of evolution and move us towards intentionally designing proteins for a specific purpose.”

Do AIs Dream of CRISPR Sheep?

All large language models need training data. The same is true for an algorithm that generates gene editors. Unlike text, images, or videos that can be easily scraped online, a CRISPR database is harder to find.

The team first screened over 26 terabytes of data about current CRISPR systems and built a CRISPR-Cas atlas—the most extensive to date, according to the researchers.

The search revealed millions of CRISPR-Cas components. The team then trained their ProGen2 language model—which was fine-tuned for protein discovery—using the CRISPR atlas.

The AI eventually generated four million protein sequences with potential Cas activity. After filtering out obvious deadbeats with another computer program, the team zeroed in on a new universe of Cas “protein scissors.”

The algorithm didn’t just dream up proteins like Cas9. Cas proteins come in families, each with its own quirks in gene-editing ability. The AI also designed proteins resembling Cas13, which targets RNA, and Cas12a, which is more compact than Cas9.

Overall, the results expanded the universe of potential Cas proteins nearly five-fold. But do any of them work?

Hello, CRISPR World

For the next test, the team focused on Cas9, because it’s already widely used in biomedical and other fields. They trained the AI on roughly 240,000 different Cas9 protein structures from multiple types of animals, with the goal of generating similar proteins to replace natural ones—but with higher efficacy or precision.

The initial results were surprising: The generated sequences, roughly a million of them, were totally different than natural Cas9 proteins. But using DeepMind’s AlphaFold2, a protein structure prediction AI, the team found the generated protein sequences could adopt similar shapes.

Cas proteins can’t function without a bloodhound RNA guide. With the CRISPR-Cas atlas, the team also trained AI to generate an RNA guide when given a protein sequence.

The result is a CRISPR gene editor with both components—Cas protein and RNA guide— designed by AI. Dubbed OpenCRISPR-1, its gene editing activity was similar to classic CRISPR-Cas9 systems when tested in cultured human kidney cells. Surprisingly, the AI-generated version slashed off-target editing by roughly 95 percent.

With a few tweaks, OpenCRISPR-1 could also perform base editing, which can change single DNA letters. Compared to classic CRISPR, base editing is likely more precise as it limits damage to the genome. In human kidney cells, OpenCRISPR-1 reliably converted one DNA letter to another in three sites across the genome, with an editing rate similar to current base editors.

To be clear, the AI-generated CRISPR tools have only been tested in cells in a dish. For treatments to reach the clinic, they’d need to undergo careful testing for safety and efficacy in living creatures, which can take a long time.

Profluent is openly sharing OpenCRISPR-1 with researchers and commercial groups but keeping the AI that created the tool in-house. “We release OpenCRISPR-1 publicly to facilitate broad, ethical usage across research and commercial applications,” they wrote.

As a preprint, the paper describing their work has yet to be analyzed by expert peer reviewers. Scientists will also have to show OpenCRISPR-1 or variants work in multiple organisms, including plants, mice, and humans. But tantalizingly, the results open a new avenue for generative AI—one that could fundamentally change our genetic blueprint.

Image Credit: Profluent

Kategorie: Transhumanismus

The Crucial Building Blocks of Life on Earth Form More Easily in Outer Space

Singularity HUB - 23 Duben, 2024 - 16:00

The origin of life on Earth is still enigmatic, but we are slowly unraveling the steps involved and the necessary ingredients. Scientists believe life arose in a primordial soup of organic chemicals and biomolecules on the early Earth, eventually leading to actual organisms.

It’s long been suspected that some of these ingredients may have been delivered from space. Now a new study, published in Science Advances, shows that a special group of molecules, known as peptides, can form more easily under the conditions of space than those found on Earth. That means they could have been delivered to the early Earth by meteorites or comets—and that life may be able to form elsewhere, too.

The functions of life are upheld in our cells (and those of all living beings) by large, complex carbon-based (organic) molecules called proteins. How to make the large variety of proteins we need to stay alive is encoded in our DNA, which is itself a large and complex organic molecule.

However, these complex molecules are assembled from a variety of small and simple molecules such as amino acids—the so-called building blocks of life.

To explain the origin of life, we need to understand how and where these building blocks form and under what conditions they spontaneously assemble themselves into more complex structures. Finally, we need to understand the step that enables them to become a confined, self-replicating system—a living organism.

This latest study sheds light on how some of these building blocks might have formed and assembled and how they ended up on Earth.

Steps to Life

DNA is made up of about 20 different amino acids. Like letters of the alphabet, these are arranged in DNA’s double helix structure in different combinations to encrypt our genetic code.

Peptides are also an assemblage of amino acids in a chain-like structure. Peptides can be made up of as little as two amino acids, but also range to hundreds of amino acids.

The assemblage of amino acids into peptides is an important step because peptides provide functions such as catalyzing, or enhancing, reactions that are important to maintaining life. They are also candidate molecules that could have been further assembled into early versions of membranes, confining functional molecules in cell-like structures.

However, despite their potentially important role in the origin of life, it was not so straightforward for peptides to form spontaneously under the environmental conditions on the early Earth. In fact, the scientists behind the current study had previously shown that the cold conditions of space are actually more favorable to the formation of peptides.

The interstellar medium. Image Credit: Charles Carter/Keck Institute for Space Studies

In the very low density clouds of molecules and dust particles in a part of space called the interstellar medium (see above), single atoms of carbon can stick to the surfaces of dust grains together with carbon monoxide and ammonia molecules. They then react to form amino acid-like molecules. When such a cloud becomes denser and dust particles also start to stick together, these molecules can assemble into peptides.

In their new study, the scientists look at the dense environment of dusty disks, from which a new solar system with a star and planets emerges eventually. Such disks form when clouds suddenly collapse under the force of gravity. In this environment, water molecules are much more prevalent—forming ice on the surfaces of any growing agglomerates of particles that could inhibit the reactions that form peptides.

By emulating the reactions likely to occur in the interstellar medium in the laboratory, the study shows that, although the formation of peptides is slightly diminished, it is not prevented. Instead, as rocks and dust combine to form larger bodies such as asteroids and comets, these bodies heat up and allow for liquids to form. This boosts peptide formation in these liquids, and there’s a natural selection of further reactions resulting in even more complex organic molecules. These processes would have occurred during the formation of our own solar system.

Many of the building blocks of life such as amino acids, lipids, and sugars can form in the space environment. Many have been detected in meteorites.

Because peptide formation is more efficient in space than on Earth, and because they can accumulate in comets, their impacts on the early Earth might have delivered loads that boosted the steps towards the origin of life on Earth.

So, what does all this mean for our chances of finding alien life? Well, the building blocks for life are available throughout the universe. How specific the conditions need to be to enable them to self-assemble into living organisms is still an open question. Once we know that, we’ll have a good idea of how widespread, or not, life might be.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Aldebaran S / Unsplash

Kategorie: Transhumanismus

A Universal Vaccine Against Any Viral Variant? A New Study Suggests It’s Possible

Singularity HUB - 22 Duben, 2024 - 22:28

From Covid boosters to annual flu shots, most of us are left wondering: Why so many, so often?

There’s a reason to update vaccines. Viruses rapidly mutate, which can help them escape the body’s immune system, putting previously vaccinated people at risk of infection. Using AI modeling, scientists have increasingly been able to predict how viruses will evolve. But they mutate fast, and we’re still playing catch up.

An alternative strategy is to break the cycle with a universal vaccine that can train the body to recognize a virus despite mutation. Such a vaccine could eradicate new flu strains, even if the virus has transformed into nearly unrecognizable forms. The strategy could also finally bring a vaccine for the likes of HIV, which has so far notoriously evaded decades of efforts.

This month, a team from UC California Riverside, led by Dr. Shou-Wei Ding, designed a vaccine that unleashed a surprising component of the body’s immune system against invading viruses.

In baby mice without functional immune cells to ward off infections, the vaccine defended against lethal doses of a deadly virus. The protection lasted at least 90 days after the initial shot.

The strategy relies on a controversial theory. Most plants and fungi have an innate defense against viruses that chops up their genetic material. Called RNA interference (RNAi), scientists have long debated whether the same mechanism exists in mammals—including humans.

“It’s an incredible system because it can be adapted to any virus,” Dr. Olivier Voinnet at the Swiss Federal Institute of Technology, who championed the theory with Ding, told Nature in late 2013.

A Hidden RNA Universe

RNA molecules are usually associated with the translation of genes into proteins.

But they’re not just biological messengers. A wide array of small RNA molecules roam our cells. Some shuttle protein components through the cell during the translation of DNA. Others change how DNA is expressed and may even act as a method of inheritance.

But fundamental to immunity are small interfering RNA molecules, or siRNAs. In plants and invertebrates, these molecules are vicious defenders against viral attacks. To replicate, viruses need to hijack the host cell’s machinery to copy their genetic material—often, it’s RNA. The invaded cells recognize the foreign genetic material and automatically launch an attack.

During this attack, called RNA interference, the cell chops the invading viruses’ RNA genome into tiny chunks–siRNA. The cell then spews these viral siRNA molecules into the body to alert the immune system. The molecules also directly grab onto the invading viruses’ genome, blocking it from replicating.

Here’s the kicker: Vaccines based on antibodies usually target one or two locations on a virus, making them vulnerable to mutation should those locations change their makeup. RNA interference generates thousands of siRNA molecules that cover the entire genome—even if one part of a virus mutates, the rest is still vulnerable to the attack.

This powerful defense system could launch a new generation of vaccines. There’s just one problem. While it’s been observed in plants and flies, whether it exists in mammals has been highly controversial.

“We believe that RNAi has been antiviral for hundreds of millions of years,” Ding told Nature in 2013. “Why would we mammals dump such an effective defense?”

Natural Born Viral Killers

In the 2013 study in Science, Ding and colleagues suggested mammals also have an antiviral siRNA mechanism—it’s just being repressed by a gene carried by most viruses. Dubbed B2, the gene acts like a “brake,” smothering any RNA interference response from host cells by destroying their ability to make siRNA snippets.

Getting rid of B2 should kick RNA interference back into gear. To prove the theory, the team genetically engineered a virus without a functioning B2 gene and tried to infect hamster cells and immunocompromised baby mice. Called Nodamura virus, it’s transmitted by mosquitoes in the wild and is often deadly.

But without B2, even a lethal dose of the virus lost its infectious power. The baby mice rapidly generated a hefty dose of siRNA molecules to clear out the invaders. As a result, the infection never took hold, and the critters—even when already immunocompromised—survived.

“I truly believe that the RNAi response is relevant to at least some viruses that infect mammals,” said Ding at the time.

New-Age Vaccines

Many vaccines contain either a dead or a living but modified version of a virus to train the immune system. When faced with the virus again, the body produces T cells to kill off the target, B cells that pump out antibodies, and other immune “memory” cells to alert against future attacks. But their effects don’t always last, especially if a virus mutates.

Rather than rallying T and B cells, triggering the body’s siRNA response offers another type of immune defense. This can be done by deleting the B2 gene in live viruses. These viruses can be formulated into a new type of vaccine, which the team has been working to develop, relying on RNA interference to ward off invaders. The resulting flood of siRNA molecules triggered by the vaccine would, in theory, also provide some protection against future infection.

“If we make a mutant virus that cannot produce the protein to suppress our RNAi [RNA interference], we can weaken the virus. It can replicate to some level, but then loses the battle to the host RNAi response,” Ding said in a press release about the most recent study.  “A virus weakened in this way can be used as a vaccine for boosting our RNAi immune system.”

In the study, his team tried the strategy against Nodamura virus by removing its B2 gene.

The team vaccinated baby and adult mice, both of which were genetically immunocompromised in that they couldn’t mount T cell or B cell defenses. In just two days, the single shot fully protected the mice against a deadly dose of virus, and the effect lasted over three months.

Viruses are most harmful to vulnerable populations—infants, the elderly, and immunocompromised individuals. Because of their weakened immune systems, current vaccines aren’t always as effective. Triggering siRNA could be a life-saving alternative strategy.

Although it works in mice, whether humans respond similarly remains to be seen. But there’s much to look forward to. The B2 “brake” protein has also been found in lots of other common viruses, including dengue, flu, and a family of viruses that causes fever, rash, and blisters.

The team is already working on a new flu vaccine, using live viruses without the B2 protein. If successful, the vaccine could potentially be made as a nasal spray—forget the needle jab. And if their siRNA theory holds up, such a vaccine might fend off the virus even as it mutates into new strains. The playbook could also be adapted to tackle new Covid variants, RSV, or whatever nature next throws at us.

This vaccine strategy is “broadly applicable to any number of viruses, broadly effective against any variant of a virus, and safe for a broad spectrum of people,” study author Dr. Rong Hai said in the press release. “This could be the universal vaccine that we have been looking for.”

Image Credit: Diana Polekhina / Unsplash

Kategorie: Transhumanismus

Make Music A Full Body Experience With A “Vibro-Tactile” Suit

Futurism - Enhanced Humans - 27 Září, 2018 - 17:09
SYNESTHETES

Tired: Listening to music.
Wired: Feeling the music.

A mind-bending new suit straps onto your torso, ankles and wrists, then uses actuators to translate audio into vivid vibration. The result: a new way for everyone to experience music, according to its creators. That’s especially exciting for people who have trouble hearing.

THE FEELIES

The Music: Not Impossible suit was created by design firm Not Impossible Labs and electronics manufacturing company Avnet. The suit can create sensations to go with pre-recorded music, or a “Vibrotactile DJ” can adjust the sensations in real time during a live music event.”

Billboard writer Andy Hermann tried the suit out, and it sounds like a trip.

“Sure enough, a pulse timed to a kickdrum throbs into my ankles and up through my legs,” he wrote. “Gradually, [the DJ] brings in other elements: the tap of a woodblock in my wrists, a bass line massaging my lower back, a harp tickling a melody across my chest.”

MORE ACCESSIBLE

To show the suit off, Not Impossible and Avnet organized a performance this past weekend by the band Greta Van Fleet at the Life is Beautiful Festival in Las Vegas. The company allowed attendees to don the suits. Mandy Harvey, a deaf musician who stole the show on America’s Got Talent last year, talked about what the performance meant to her in a video Avnet posted to Facebook.

“It was an unbelievable experience to have an entire audience group who are all experiencing the same thing at the same time,” she said. “For being a deaf person, showing up at a concert, that never happens. You’re always excluded.”

READ MORE: Not Impossible Labs, Zappos Hope to Make Concerts More Accessible for the Deaf — and Cooler for Everyone [Billboard]

More on accessible design: New Tech Allows Deaf People To Sense Sounds

The post Make Music A Full Body Experience With A “Vibro-Tactile” Suit appeared first on Futurism.

Kategorie: Transhumanismus

“Synthetic Skin” Could Give Prosthesis Users a Superhuman Sense of Touch

Futurism - Enhanced Humans - 20 Září, 2018 - 21:37
IN THE FEELS

Today’s prosthetics can give people with missing limbs the ability to do almost anything — run marathons, climb mountains, you name it. But when it comes to letting those people feel what they could with a natural limb, the devices, however mechanically sophisticated, invariably fall short.

Now researchers have created a “synthetic skin” with a sense of touch that not only matches the sensitivity of natural skin, but in some cases even exceeds it. Now the only challenge is getting that information back into the wearer’s nervous system.

UNDER PRESSURE

When something presses against your skin, your nerves receive and transmit that pressure to the brain in the form of electrical signals.

To mimic that biological process, the researchers suspended a flexible polymer, dusted with magnetic particles, over a magnetic sensor. The effect is like a drum: Applying even the tiniest amount of pressure to the membrane causes the magnetic particles to move closer to the sensors, and they transmit this movement electronically.

The research, which could open the door to super-sensitive prosthetics, was published Wednesday in the journal Science Robotics.

SPIDEY SENSE TINGLING

Tests shows that the skin can sense extremely subtle pressure, such as a blowing breeze, dripping water, or crawling ants. In some cases, the synthetic skin responded to pressures so gentle that natural human skin wouldn’t be able to detect them.

While the sensing ability of this synthetic skin is remarkable, the team’s research doesn’t address how to transmit the signals to the human brain. Other scientists are working on that, though, so eventually this synthetic skin could give prosthetic wearers the ability to feel forces even their biological-limbed friends can’t detect.

READ MORE: A Skin-Inspired Tactile Sensor for Smart Prosthetics [Science Robotics]

More on synthetic skin: Electronic Skin Lets Amputees Feel Pain Through Their Prosthetics

The post “Synthetic Skin” Could Give Prosthesis Users a Superhuman Sense of Touch appeared first on Futurism.

Kategorie: Transhumanismus

People Are Zapping Their Brains to Boost Creativity. Experts Have Concerns.

Futurism - Enhanced Humans - 19 Září, 2018 - 21:56
BRAIN BOOST

There’s a gadget that some say can help alleviate depression and enhance creativity. All you have to do is place a pair of electrodes on your scalp and the device will deliver electrical current to your brain. It’s readily available on Amazon or you can even make your own.

But in a new paper published this week in the Creativity Research Journal, psychologists at Georgetown University warned that the practice is spreading before we have a good understanding of its health effects, especially since consumers are already buying and building unregulated devices to shock them. They also cautioned that the technique, which scientists call transcranial electrical stimulation (tES), could have adverse effects on the brains of young people.

“There are multiple potential concerns with DIY-ers self-administering electric current to their brains, but this use of tES may be inevitable,” said co-author Adam Green in a press release. “And, certainly, anytime there is risk of harm with a technology, the scariest risks are those associated with kids and the developing brain”

SHOCK JOCK

Yes, there’s evidence that tES can help patients with depression, anxiety, Parkinson’s disease, and other serious conditions, the Georgetown researchers acknowledge.

But that’s only when it’s administered by a trained health care provider. When administering tES at home, people might ignore safety directions, they wrote, or their home-brewed devices could deliver unsafe amounts of current. And because it’s not yet clear what effects of tES might be on the still-developing brains of young people, the psychologists advise teachers and parents to resist the temptation to use the devices to encourage creativity among children.

The takeaway: tES is likely here to stay, and it may provide real benefits. But for everyone’s sake, consumer-oriented tES devices should be regulated to protect users.

READ MORE: Use of electrical brain stimulation to foster creativity has sweeping implications [Eurekalert]

More on transcranial electrical stimulation: DARPA’s New Brain Device Increases Learning Speed by 40%

The post People Are Zapping Their Brains to Boost Creativity. Experts Have Concerns. appeared first on Futurism.

Kategorie: Transhumanismus

Military Pilots Can Control Three Jets at Once via a Neural Implant

Futurism - Enhanced Humans - 19 Září, 2018 - 16:25
MIND CONTROL

The military is making it easier than ever for soldiers to distance themselves from the consequences of war. When drone warfare emerged, pilots could, for the first time, sit in an office in the U.S. and drop bombs in the Middle East.

Now, one pilot can do it all, just using their mind — no hands required.

Earlier this month, DARPA, the military’s research division, unveiled a project that it had been working on since 2015: technology that grants one person the ability to pilot multiple planes and drones with their mind.

“As of today, signals from the brain can be used to command and control … not just one aircraft but three simultaneous types of aircraft,” Justin Sanchez, director of DARPA’s Biological Technologies Office, said, according to Defense One.

THE SINGULARITY

Sanchez may have unveiled this research effort at a “Trajectory of Neurotechnology” session at DARPA’s 60th anniversary event, but his team has been making steady progress for years. Back in 2016, a volunteer equipped with a brain-computer interface (BCI) was able to pilot an aircraft in a flight simulator while keeping two other planes in formation — all using just his thoughts, a spokesperson from DARPA’s Biological Technologies Office told Futurism.

In 2017, Copeland was able to steer a plane through another simulation, this time receiving haptic feedback — if the plane needed to be steered in a certain direction, Copeland’s neural implant would create a tingling sensation in his hands.

NOT QUITE MAGNETO

There’s a catch. The DARPA spokesperson told Futurism that because this BCI makes use of electrodes implanted in and on the brain’s sensory and motor cortices, experimentation has been limited to volunteers with varying degrees of paralysis. That is: the people steering these simulated planes already had brain electrodes, or at least already had reason to undergo surgery.

To try and figure out how to make this technology more accessible and not require surgical placement of a metal probe into people’s brains, DARPA recently launched the NExt-Generation Nonsurgical Neurotechnology (N3) program. The plan is to make a device with similar capabilities, but it’ll look more like an EEG cap that the pilot can take off once a mission is done.

“The envisioned N3 system would be a tool that the user could wield for the duration of a task or mission, then put aside,” said Al Emondi, head of N3, according to the spokesperson. “I don’t like comparisons to a joystick or keyboard because they don’t reflect the full potential of N3 technology, but they’re useful for conveying the basic notion of an interface with computers.”

READ MORE: It’s Now Possible To Telepathically Communicate with a Drone Swarm [Defense One]

More on DARPA research: DARPA Is Funding Research Into AI That Can Explain What It’s “Thinking”

The post Military Pilots Can Control Three Jets at Once via a Neural Implant appeared first on Futurism.

Kategorie: Transhumanismus

Lab-Grown Bladders Can Save People From a Lifetime of Dialysis

Futurism - Enhanced Humans - 12 Září, 2018 - 22:54
ONE IN A MILLION TEN

Today, about 10 people on Earth have bladders they weren’t born with. No, they didn’t receive bladder transplants — doctors grew these folks new bladders using the recipients’ own cells.

On Tuesday, the BBC published a report on the still-nascent procedure of transplanting lab-grown bladders. In it, the publication talks to Luke Massella, who underwent the procedure more than a decade ago. Massella was born with spina bifida, which carries with it a risk of damage to the bladder and urinary tract. Now, he lives a normal life, he told the BBC.

“I was kind of facing the possibility I might have to do dialysis [blood purification via machine] for the rest of my life,” he said. “I wouldn’t be able to play sports, and have the normal kid life with my brother.”

All that changed after Anthony Atala, a surgeon at Boston Children’s Hospital, decided he was going to grow a new bladder for Massella.

ONE NEW BLADDER, COMING UP!

To do that, Atala first removed a small piece of Massella’s own bladder. He then removed cells from this portion of bladder and multiplied them in a petri dish. Once he had enough cells, he coated a scaffold with the cells and placed the whole thing in a temperature controlled, high oxygen environment. After a few weeks, the lab-created bladder was ready for transplantation into Massella.

“So it was pretty much like getting a bladder transplant, but from my own cells, so you don’t have to deal with rejection,” said Massella.

The number of people with lab-grown bladders might still be low enough to count on your fingers, but researchers are making huge advances in growing everything from organs to skin in the lab. Eventually, we might reach a point when we can replace any body part we need to with a perfect biological match that we built ourselves.

READ MORE: “A New Bladder Made From My Cells Gave Me My Life Back” [BBC]

More on growing organs: The FDA Wants to Expedite Approval of Regenerative Organ Therapies

The post Lab-Grown Bladders Can Save People From a Lifetime of Dialysis appeared first on Futurism.

Kategorie: Transhumanismus
Syndikovat obsah