Google Security Blog

Syndikovat obsah
The latest news and insights from Google on security and safety on the Internet.Edward Fernandezhttp://www.blogger.com/profile/[email protected]
Aktualizace: 22 min 10 sek zpět

New security requirements adopted by HTTPS certificate industry

27 Březen, 2025 - 21:49
Posted by Chrome Root Program, Chrome Security Team

The Chrome Root Program launched in 2022 as part of Google’s ongoing commitment to upholding secure and reliable network connections in Chrome. We previously described how the Chrome Root Program keeps users safe, and described how the program is focused on promoting technologies and practices that strengthen the underlying security assurances provided by Transport Layer Security (TLS). Many of these initiatives are described on our forward looking, public roadmap named “Moving Forward, Together.

At a high-level, “Moving Forward, Together” is our vision of the future. It is non-normative and considered distinct from the requirements detailed in the Chrome Root Program Policy. It’s focused on themes that we feel are essential to further improving the Web PKI ecosystem going forward, complementing Chrome’s core principles of speed, security, stability, and simplicity. These themes include:

  • Encouraging modern infrastructures and agility
  • Focusing on simplicity
  • Promoting automation
  • Reducing mis-issuance
  • Increasing accountability and ecosystem integrity
  • Streamlining and improving domain validation practices
  • Preparing for a "post-quantum" world

Earlier this month, two “Moving Forward, Together” initiatives became required practices in the CA/Browser Forum Baseline Requirements (BRs). The CA/Browser Forum is a cross-industry group that works together to develop minimum requirements for TLS certificates. Ultimately, these new initiatives represent an improvement to the security and agility of every TLS connection relied upon by Chrome users.

If you’re unfamiliar with HTTPS and certificates, see the “Introduction” of this blog post for a high-level overview.

Multi-Perspective Issuance Corroboration

Before issuing a certificate to a website, a Certification Authority (CA) must verify the requestor legitimately controls the domain whose name will be represented in the certificate. This process is referred to as "domain control validation" and there are several well-defined methods that can be used. For example, a CA can specify a random value to be placed on a website, and then perform a check to verify the value’s presence has been published by the certificate requestor.

Despite the existing domain control validation requirements defined by the CA/Browser Forum, peer-reviewed research authored by the Center for Information Technology Policy (CITP) of Princeton University and others highlighted the risk of Border Gateway Protocol (BGP) attacks and prefix-hijacking resulting in fraudulently issued certificates. This risk was not merely theoretical, as it was demonstrated that attackers successfully exploited this vulnerability on numerous occasions, with just one of these attacks resulting in approximately $2 million dollars of direct losses.

Multi-Perspective Issuance Corroboration (referred to as "MPIC") enhances existing domain control validation methods by reducing the likelihood that routing attacks can result in fraudulently issued certificates. Rather than performing domain control validation and authorization from a single geographic or routing vantage point, which an adversary could influence as demonstrated by security researchers, MPIC implementations perform the same validation from multiple geographic locations and/or Internet Service Providers. This has been observed as an effective countermeasure against ethically conducted, real-world BGP hijacks.

The Chrome Root Program led a work team of ecosystem participants, which culminated in a CA/Browser Forum Ballot to require adoption of MPIC via Ballot SC-067. The ballot received unanimous support from organizations who participated in voting. Beginning March 15, 2025, CAs issuing publicly-trusted certificates must now rely on MPIC as part of their certificate issuance process. Some of these CAs are relying on the Open MPIC Project to ensure their implementations are robust and consistent with ecosystem expectations.

We’d especially like to thank Henry Birge-Lee, Grace Cimaszewski, Liang Wang, Cyrill Krähenbühl, Mihir Kshirsagar, Prateek Mittal, Jennifer Rexford, and others from Princeton University for their sustained efforts in promoting meaningful web security improvements and ongoing partnership.

Linting

Linting refers to the automated process of analyzing X.509 certificates to detect and prevent errors, inconsistencies, and non-compliance with requirements and industry standards. Linting ensures certificates are well-formatted and include the necessary data for their intended use, such as website authentication.

Linting can expose the use of weak or obsolete cryptographic algorithms and other known insecure practices, improving overall security. Linting improves interoperability and helps CAs reduce the risk of non-compliance with industry standards (e.g., CA/Browser Forum TLS Baseline Requirements). Non-compliance can result in certificates being "mis-issued". Detecting these issues before a certificate is in use by a site operator reduces the negative impact associated with having to correct a mis-issued certificate.

There are numerous open-source linting projects in existence (e.g., certlint, pkilint, x509lint, and zlint), in addition to numerous custom linting projects maintained by members of the Web PKI ecosystem. “Meta” linters, like pkimetal, combine multiple linting tools into a single solution, offering simplicity and significant performance improvements to implementers compared to implementing multiple standalone linting solutions.

Last spring, the Chrome Root Program led ecosystem-wide experiments, emphasizing the need for linting adoption due to the discovery of widespread certificate mis-issuance. We later participated in drafting CA/Browser Forum Ballot SC-075 to require adoption of certificate linting. The ballot received unanimous support from organizations who participated in voting. Beginning March 15, 2025, CAs issuing publicly-trusted certificates must now rely on linting as part of their certificate issuance process.

What’s next?

We recently landed an updated version of the Chrome Root Program Policy that further aligns with the goals outlined in “Moving Forward, Together.” The Chrome Root Program remains committed to proactive advancement of the Web PKI. This commitment was recently realized in practice through our proposal to sunset demonstrated weak domain control validation methods permitted by the CA/Browser Forum TLS Baseline Requirements. The weak validation methods in question are now prohibited beginning July 15, 2025.

It’s essential we all work together to continually improve the Web PKI, and reduce the opportunities for risk and abuse before measurable harm can be realized. We continue to value collaboration with web security professionals and the members of the CA/Browser Forum to realize a safer Internet. Looking forward, we’re excited to explore a reimagined Web PKI and Chrome Root Program with even stronger security assurances for the web as we navigate the transition to post-quantum cryptography. We’ll have more to say about quantum-resistant PKI later this year.

Kategorie: Hacking & Security

Titan Security Keys now available in more countries

26 Březen, 2025 - 18:00
Posted by Christiaan Brand, Group Product Manager

We’re excited to announce that starting today, Titan Security Keys are available for purchase in more than 10 new countries:

  • Ireland

  • Portugal

  • The Netherlands

  • Denmark

  • Norway

  • Sweden

  • Finland

  • Australia

  • New Zealand

  • Singapore

  • Puerto Rico

This expansion means Titan Security Keys are now available in 22 markets, including previously announced countries like Austria, Belgium, Canada, France, Germany, Italy, Japan, Spain, Switzerland, the UK, and the US.


What is a Titan Security Key?

A Titan Security Key is a small, physical device that you can use to verify your identity when you sign in to your Google Account. It’s like a second password that’s much harder for cybercriminals to steal.

Titan Security Keys allow you to store your passkeys on a strong, purpose-built device that can help protect you against phishing and other online attacks. They’re easy to use and work with a wide range of devices and services as they’re compatible with the FIDO2 standard.

How do I use a Titan Security Key?

To use a Titan Security Key, you simply plug it into your computer’s USB port or tap it to your device using NFC. When you’re asked to verify your identity, you’ll just need to tap the button on the key.

Where can I buy a Titan Security Key?

You can buy Titan Security Keys on the Google Store.


We’re committed to making our products available to as many people as possible and we hope this expansion will help more people stay safe online.


Kategorie: Hacking & Security

Announcing OSV-Scanner V2: Vulnerability scanner and remediation tool for open source

17 Březen, 2025 - 17:46
Posted by Rex Pan and Xueqin Cui, Google Open Source Security Team

In December 2022, we released the open source OSV-Scanner tool, and earlier this year, we open sourced OSV-SCALIBR. OSV-Scanner and OSV-SCALIBR, together with OSV.dev are components of an open platform for managing vulnerability metadata and enabling simple and accurate matching and remediation of known vulnerabilities. Our goal is to simplify and streamline vulnerability management for developers and security teams alike.

Today, we're thrilled to announce the launch of OSV-Scanner V2.0.0, following the announcement of the beta version. This V2 release builds upon the foundation we laid with OSV-SCALIBR and adds significant new capabilities to OSV-Scanner, making it a comprehensive vulnerability scanner and remediation tool with broad support for formats and ecosystems. 



What’s newEnhanced Dependency Extraction with OSV-SCALIBR

This release represents the first major integration of OSV-SCALIBR features into OSV-Scanner, which is now the official command-line code and container scanning tool for the OSV-SCALIBR library. This integration also expanded our support for the kinds of dependencies we can extract from projects and containers:

Source manifests and lockfiles:

  • .NET: deps.json

  • Python: uv.lock

  • JavaScript: bun.lock

  • Haskell: cabal.project.freeze, stack.yaml.lock

Artifacts:

  • Node modules

  • Python wheels

  • Java uber jars

  • Go binaries


Layer and base image-aware container scanning

Previously, OSV-Scanner focused on scanning of source repositories and language package manifests and lockfiles. OSV-Scanner V2 adds support for comprehensive, layer-aware scanning for Debian, Ubuntu, and Alpine container images. OSV-Scanner can now analyze container images to provide:


  • Layers where a package was first introduced

  • Layer history and commands

  • Base images the image is based on (leveraging a new experimental API provided by deps.dev).

  • OS/Distro the container is running on

  • Filtering of vulnerabilities that are unlikely to impact your container image



This layer analysis currently supports the following OSes and languages:


Distro Support:

  • Alpine OS

  • Debian

  • Ubuntu


Language Artifacts Support:

  • Go

  • Java

  • Node

  • Python



Interactive HTML output

Presenting vulnerability scan information in a clear and actionable way is difficult, particularly in the context of container scanning. To address this, we built a new interactive local HTML output format. This provides more interactivity and information compared to terminal only outputs, including:

  • Severity breakdown

  • Package and ID filtering

  • Vulnerability importance filtering

  • Full vulnerability advisory entries



And additionally for container image scanning:

  • Layer filtering

  • Image layer information

  • Base image identification


Illustration of HTML output for container image scanning


Guided remediation for Maven pom.xml

Last year we released a feature called guided remediation for npm, which streamlines vulnerability management by intelligently suggesting prioritized, targeted upgrades and offering flexible strategies. This ultimately maximizes security improvements while minimizing disruption. We have now expanded this feature to Java through support for Maven pom.xml.

With guided remediation support for Maven, you can remediate vulnerabilities in both direct and transitive dependencies through direct version updates or overriding versions through dependency management.


We’ve introduced a few new things for our Maven support:

  • A new remediation strategy override.

  • Support for reading and writing pom.xml files, including writing changes to local parent pom files. We leverage OSV-Scalibr for Maven transitive dependency extraction.

  • A private registry can be specified to fetch Maven metadata.

  • A new experimental subcommend to update all your dependencies in pom.xml to the latest version.


We also introduced machine readable output for guided remediation that makes it easier to integrate guided remediation into your workflow.


What’s next?

We have exciting plans for the remainder of the year, including:

  • Continued OSV-SCALIBR Convergence: We will continue to converge OSV-Scanner and OSV-SCALIBR to bring OSV-SCALIBR’s functionality to OSV-Scanner’s CLI interface.

  • Expanded Ecosystem Support: We'll expand the number of ecosystems we support across all the features currently in OSV-Scanner, including more languages for guided remediation, OS advisories for container scanning, and more general lockfile support for source code scanning.

  • Full Filesystem Accountability for Containers: Another goal of osv-scanner is to give you the ability to know and account for every single file on your container image, including sideloaded binaries downloaded from the internet.

  • Reachability Analysis: We're working on integrating reachability analysis to provide deeper insights into the potential impact of vulnerabilities.

  • VEX Support: We're planning to add support for Vulnerability Exchange (VEX) to facilitate better communication and collaboration around vulnerability information.


Try OSV-Scanner V2

You can try V2.0.0 and contribute to its ongoing development by checking out OSV-Scanner or the OSV-SCALIBR repository. We welcome your feedback and contributions as we continue to improve the platform and make vulnerability management easier for everyone.

If you have any questions or if you would like to contribute, don't hesitate to reach out to us at [email protected], or post an issue in our issue tracker.
Kategorie: Hacking & Security

Vulnerability Reward Program: 2024 in Review

7 Březen, 2025 - 20:09
Posted by Dirk Göhmann


In 2024, our Vulnerability Reward Program confirmed the ongoing value of engaging with the security research community to make Google and its products safer. This was evident as we awarded just shy of $12 million to over 600 researchers based in countries around the globe across all of our programs.





Vulnerability Reward Program 2024 in Numbers







You can learn about who’s reporting to the Vulnerability Reward Program via our Leaderboard – and find out more about our youngest security researchers who’ve recently joined the ranks of Google bug hunters.




VRP Highlights in 2024


In 2024 we made a series of changes and improvements coming to our vulnerability reward programs and related initiatives:



  • The Google VRP revamped its reward structure, bumping rewards up to a maximum of $151,515, the Mobile VRP is now offering up to $300,000 for critical vulnerabilities in top-tier apps, Cloud VRP has a top-tier award of up $151,515, and Chrome awards now peak at $250,000 (see the below section on Chrome for details).

  • We rolled out InternetCTF – to get rewarded, discover novel code execution vulnerabilities in open source and provide Tsunami plugin patches for them.

  • The Abuse VRP saw a 40% YoY increase in payouts – we received over 250 valid bugs targeting abuse and misuse issues in Google products, resulting in over $290,000 in rewards.

  • To improve the payment process for rewards going to bug hunters, we introduced Bugcrowd as an additional payment option on bughunters.google.com alongside the existing standard Google payment option. 

  • We hosted two editions of bugSWAT for training, skill sharing, and, of course, some live hacking – in August, we had 16 bug hunters in attendance in Las Vegas, and in October, as part of our annual security conference ESCAL8 in Malaga, Spain, we welcomed 40 of our top researchers. Between these two events, our bug hunters were rewarded $370,000 (and plenty of swag).

  • We doubled down on our commitment to support the next generation of security engineers by hosting four init.g workshops (Las Vegas, São Paulo, Paris, and Malaga). Follow the Google VRP channel on X to stay tuned on future events.




More detailed updates on selected programs are shared in the following sections.




Android and Google Devices

In 2024, the Android and Google Devices Security Reward Program and the Google Mobile Vulnerability Reward Program, both part of the broader Google Bug Hunters program, continued their mission to fortify the Android ecosystem, achieving new heights in both impact and severity. We awarded over $3.3 million in rewards to researchers who demonstrated exceptional skill in uncovering critical vulnerabilities within Android and Google mobile applications. 


The above numbers mark a significant change compared to previous years. Although we saw an 8% decrease in the total number of submissions, there was a 2% increase in the number of critical and high vulnerabilities. In other words, fewer researchers are submitting fewer, but more impactful bugs, and are citing the improved security posture of the Android operating system as the central challenge. This showcases the program's sustained success in hardening Android.


This year, we had a heightened focus on Android Automotive OS and WearOS, bringing actual automotive devices to multiple live hacking events and conferences. At ESCAL8, we hosted a live-hacking challenge focused on Pixel devices, resulting in over $75,000 in rewards in one weekend, and the discovery of several memory safety vulnerabilities. To facilitate learning, we launched a new Android hacking course in collaboration with external security researchers, focused on mobile app security, designed for newcomers and veterans alike. Stay tuned for more.


We extend our deepest gratitude to the dedicated researchers who make the Android ecosystem safer. We're proud to work with you! Special thanks to Zinuo Han (@ele7enxxh) for their expertise in Bluetooth security, blunt (@blunt_qian) for holding the record for the most valid reports submitted to the Google Play Security Reward Program, and WANG,YONG (@ThomasKing2014) for groundbreaking research on rooting Android devices with kernel MTE enabled. We also appreciate all researchers who participated in last year's bugSWAT event in Málaga. Your contributions are invaluable! 


Chrome


Chrome did some remodeling in 2024 as we updated our reward amounts and structure to incentivize deeper research. For example, we increased our maximum reward for a single issue to $250,000 for demonstrating RCE in the browser or other non-sandboxed process, and more if done directly without requiring a renderer compromise. 



In 2024, UAF mitigation MiraclePtr was fully launched across all platforms, and a year after the initial launch, MiraclePtr-protected bugs are no longer being considered exploitable security bugs. In tandem, we increased the MiraclePtr Bypass Reward to $250,128. Between April and November, we also launched the first and second iterations of the V8 Sandbox Bypass Rewards as part of the progression towards the V8 sandbox, eventually becoming a security boundary in Chrome. 



We received 337 reports of unique, valid security bugs in Chrome during 2024, and awarded 137 Chrome VRP researchers $3.4 million in total. The highest single reward of 2024 was $100,115 and was awarded to Mickey for their report of a MiraclePtr Bypass after MiraclePtr was initially enabled across most platforms in Chrome M115 in 2023. We rounded out the year by announcing the top 20 Chrome VRP researchers for 2024, all of whom were gifted new Chrome VRP swag, featuring our new Chrome VRP mascot, Bug.





Cloud VRP


The Cloud VRP launched in October as a Cloud-focused vulnerability reward program dedicated to Google Cloud products and services. As part of the launch, we also updated our product tiering and improved our reward structure to better align our reports with their impact on Google Cloud. This resulted in over 150 Google Cloud products coming under the top two reward tiers, enabling better rewards for our Cloud researchers and a more secure cloud.




Since its launch, Google Cloud VRP triaged over 400 reports and filed over 200 unique security vulnerabilities for Google Cloud products and services leading to over $500,000 in researcher rewards. 




Our highlight last year was launching at the bugSWAT event in Málaga where we got to meet many of our amazing researchers who make our program so successful! The overwhelming positive feedback from the researcher community continues to propel us to mature Google Cloud VRP further this year. Stay tuned for some exciting announcements!





Generative AI

We’re celebrating an exciting first year of AI bug bounties.  We received over 150 bug reports – over $55,000 in rewards so far – with one-in-six leading to key improvements. 




We also ran a bugSWAT live-hacking event targeting LLM products and received 35 reports, totaling more than $87,000 – including issues like “Hacking Google Bard - From Prompt Injection to Data Exfiltration” and “We Hacked Google A.I. for $50,000”.



Keep an eye on Gen AI in 2025 as we focus on expanding scope and sharing additional ways for our researcher community to contribute. 



Looking Forward to 2025

In 2025, we will be celebrating 15 years of VRP at Google, during which we have remained fully committed to fostering collaboration, innovation, and transparency with the security community, and will continue to do so in the future. Our goal remains to stay ahead of emerging threats, adapt to evolving technologies, and continue to strengthen the security posture of Google’s products and services. 




We want to send a huge thank you to our bug hunter community for helping us make Google products and platforms more safe and secure for our users around the world – and invite researchers not yet engaged with the Vulnerability Reward Program to join us in our mission to keep Google safe! 




Thank you to Dirk Göhmann, Amy Ressler, Eduardo Vela, Jan Keller, Krzysztof Kotowicz, Martin Straka, Michael Cote, Mike Antares, Sri Tulasiram, and Tony Mendez.



Tip: Want to be informed of new developments and events around our Vulnerability Reward Program? Follow the Google VRP channel on X to stay in the loop and be sure to check out the Security Engineering blog, which covers topics ranging from VRP updates to security practices and vulnerability descriptions (30 posts in 2024)!


Kategorie: Hacking & Security

New AI-Powered Scam Detection Features to Help Protect You on Android

4 Březen, 2025 - 17:59
Posted by Lyubov Farafonova, Product Manager, Phone by Google; Alberto Pastor Nieto, Sr. Product Manager Google Messages and RCS Spam and Abuse

Google has been at the forefront of protecting users from the ever-growing threat of scams and fraud with cutting-edge technologies and security expertise for years. In 2024, scammers used increasingly sophisticated tactics and generative AI-powered tools to steal more than $1 trillion from mobile consumers globally, according to the Global Anti-Scam Alliance. And with the majority of scams now delivered through phone calls and text messages, we’ve been focused on making Android’s safeguards even more intelligent with powerful Google AI to help keep your financial information and data safe.

Today, we’re launching two new industry-leading AI-powered scam detection features for calls and text messages, designed to protect users from increasingly complex and damaging scams. These features specifically target conversational scams, which can often appear initially harmless before evolving into harmful situations.

To enhance our detection capabilities, we partnered with financial institutions around the world to better understand the latest advanced and most common scams their customers are facing. For example, users are experiencing more conversational text scams that begin innocently, but gradually manipulate victims into sharing sensitive data, handing over funds, or switching to other messaging apps. And more phone calling scammers are using spoofing techniques to hide their real numbers and pretend to be trusted companies.

Traditional spam protections are focused on protecting users before the conversation starts, and are less effective against these latest tactics from scammers that turn dangerous mid-conversation and use social engineering techniques. To better protect users, we invested in new, intelligent AI models capable of detecting suspicious patterns and delivering real-time warnings over the course of a conversation, all while prioritizing user privacy.

Scam Detection for messages

We’re building on our enhancements to existing Spam Protection in Google Messages that strengthen defenses against job and delivery scams, which are continuing to roll out to users. We’re now introducing Scam Detection to detect a wider range of fraudulent activities.

Scam Detection in Google Messages uses powerful Google AI to proactively address conversational scams by providing real-time detection even after initial messages are received. When the on-device AI detects a suspicious pattern in SMS, MMS, and RCS messages, users will now get a message warning of a likely scam with an option to dismiss or report and block the sender.

As part of the Spam Protection setting, Scam Detection on Google Messages is on by default and only applies to conversations with non-contacts. Your privacy is protected with Scam Detection in Google Messages, with all message processing remaining on-device. Your conversations remain private to you; if you choose to report a conversation to help reduce widespread spam, only sender details and recent messages with that sender are shared with Google and carriers. You can turn off Spam Protection, which includes Scam Detection, in your Google Messages at any time.

Scam Detection in Google Messages is launching in English first in the U.S., U.K. and Canada and will expand to more countries soon.

Scam Detection for calls

More than half of Americans reported receiving at least one scam call per day in 2024. To combat the rise of sophisticated conversational scams that deceive victims over the course of a phone call, we introduced Scam Detection late last year to U.S.-based English-speaking Phone by Google public beta users on Pixel phones.

We use AI models processed on-device to analyze conversations in real-time and warn users of potential scams. If a caller, for example, tries to get you to provide payment via gift cards to complete a delivery, Scam Detection will alert you through audio and haptic notifications and display a warning on your phone that the call may be a scam.

During our limited beta, we analyzed calls with Gemini Nano, Google’s built-in, on-device foundation model, on Pixel 9 devices and used smaller, robust on-device machine-learning models for Pixel 6+ users. Our testing showed that Gemini Nano outperformed other models, so as a result, we're currently expanding the availability of the beta to bring the most capable Scam Detection to all English-speaking Pixel 9+ users in the U.S.

Similar to Scam Detection in messaging, we built this feature to protect your privacy by processing everything on-device. Call audio is processed ephemerally and no conversation audio or transcription is recorded, stored on the device, or sent to Google or third parties. Scam Detection in Phone by Google is off by default to give users control over this feature, as phone call audio is more ephemeral compared to messages, which are stored on devices. Scam Detection only applies to calls that could potentially be scams, and is never used during calls with your contacts. If enabled, Scam Detection will beep at the start and during the call to notify participants the feature is on. You can turn off Scam Detection at any time, during an individual call or for all future calls.

According to our research and a Scam Detection beta user survey, these types of alerts have already helped people be more cautious on the phone, detect suspicious activity, and avoid falling victim to conversational scams.

Keeping Android users safe with the power of Google AI
We're committed to keeping Android users safe, and that means constantly evolving our defenses against increasingly sophisticated scams and fraud. Our investment in intelligent protection is having real-world impact for billions of users. Leviathan Security Group, a cybersecurity firm, conducted a funded evaluation of fraud protection features on a number of smartphones and found that Android smartphones, led by the Pixel 9 Pro, scored highest for built-in security features and anti-fraud efficacy1.

With AI-powered innovations like Scam Detection in Messages and Phone by Google, we're giving you more tools to stay one step ahead of bad actors. We're constantly working with our partners across the Android ecosystem to help bring new security features to even more users. Together, we’re always working to keep you safe on Android.

Notes
  1. Based on third-party research funded by Google LLC in Feb 2025 comparing the Pixel 9 Pro, iPhone 16 Pro, Samsung S24+ and Xiaomi 14 Ultra. Evaluation based on no-cost smartphone features enabled by default. Some features may not be available in all countries. 

Kategorie: Hacking & Security