Google Security Blog

Syndikovat obsah
The latest news and insights from Google on security and safety on the Internet.
Aktualizace: 30 min 1 sek zpět

Modernizing Transport Security

3 hodiny 2 min zpět
Posted by David Benjamin, Chrome networking

TLS (Transport Layer Security) is the protocol which secures HTTPS. It has a long history stretching back to the nearly twenty-year-old TLS 1.0 and its even older predecessor, SSL. Over that time, we have learned a lot about how to build secure protocols.

TLS 1.2 was published ten years ago to address weaknesses in TLS 1.0 and 1.1 and has enjoyed wide adoption since then. Today only 0.5% of HTTPS connections made by Chrome use TLS 1.0 or 1.1. These old versions of TLS rely on MD5 and SHA-1, both now broken, and contain other flaws. TLS 1.0 is no longer PCI-DSS compliant and the TLS working group has adopted a document to deprecate TLS 1.0 and TLS 1.1.

In line with these industry standards, Google Chrome will deprecate TLS 1.0 and TLS 1.1 in Chrome 72. Sites using these versions will begin to see deprecation warnings in the DevTools console in that release. TLS 1.0 and 1.1 will be disabled altogether in Chrome 81. This will affect users on early release channels starting January 2020.

Site administrators should immediately enable TLS 1.2 or later. Depending on server software (such as Apache or nginx), this may be a configuration change or a software update. Additionally, we encourage all sites to revisit their TLS configuration. Chrome’s current criteria for modern TLS is the following:

  • TLS 1.2 or later.
  • An ECDHE- and AEAD-based cipher suite. AEAD-based cipher suites are those using AES-GCM or ChaCha20-Poly1305. ECDHE_RSA_WITH_AES_128_GCM_SHA256 is the recommended option for most sites.
  • The server signature should use SHA-2. Note this is not the signature in the certificate, made by the CA. Rather, it is the signature made by the server itself, using its private key.

The older options—CBC-mode cipher suites, RSA-encryption key exchange, and SHA-1 online signatures—all have known cryptographic flaws. Each has been removed in the newly-published TLS 1.3, which is supported in Chrome 70. We retain them at prior versions for compatibility with legacy servers, but we will be evaluating them over time for eventual deprecation.

None of these changes require obtaining a new certificate. Additionally, they are backwards-compatible. Where necessary, servers may enable both modern and legacy options, to continue to support legacy clients. Note, however, such support may carry security risks. (For example, see the DROWN, FREAK, and ROBOT attacks.)

Over the coming Chrome releases, we will improve the DevTools Security Panel to point out deviations from these settings, and suggest improvements to the site’s configuration.

Enterprise deployments can preview the TLS 1.0 and 1.1 removal today by setting the SSLVersionMin policy to “tls1.2”. For enterprise deployments that need more time, this same policy can be used to re-enable TLS 1.0 or TLS 1.1 until January 2021.
Kategorie: Hacking & Security

Google and Android have your back by protecting your backups

12 Říjen, 2018 - 22:01
Posted by Troy Kensinger, Technical Program Manager, Android Security and Privacy

Android is all about choice. As such, Android strives to provide users many options to protect their data. By combining Android’s Backup Service and Google Cloud’s Titan Technology, Android has taken additional steps to securing users' data while maintaining their privacy.

Starting in Android Pie, devices can take advantage of a new capability where backed-up application data can only be decrypted by a key that is randomly generated at the client. This decryption key is encrypted using the user's lockscreen PIN/pattern/passcode, which isn’t known by Google. Then, this passcode-protected key material is encrypted to a Titan security chip on our datacenter floor. The Titan chip is configured to only release the backup decryption key when presented with a correct claim derived from the user's passcode. Because the Titan chip must authorize every access to the decryption key, it can permanently block access after too many incorrect attempts at guessing the user’s passcode, thus mitigating brute force attacks. The limited number of incorrect attempts is strictly enforced by a custom Titan firmware that cannot be updated without erasing the contents of the chip. By design, this means that no one (including Google) can access a user's backed-up application data without specifically knowing their passcode.

To increase our confidence that this new technology securely prevents anyone from accessing users' backed-up application data, the Android Security & Privacy team hired global cyber security and risk mitigation expert NCC Group to complete a security audit. Some of the outcomes included positives around Google’s security design processes, validation of code quality, and that mitigations for known attack vectors were already taken into account prior to launching the service. While there were some issues discovered during this audit, engineers corrected them quickly. For more details on how the end-to-end service works and a detailed report of NCC Group’s findings, click here.

Getting external reviews of our security efforts is one of many ways that Google and Android maintain transparency and openness which in turn helps users feel safe when it comes to their data. Whether it’s 100s of hours of gaming data or your personalized preferences in your favorite Google apps, our users' information is protected.

We want to acknowledge contributions from Shabsi Walfish, Software Engineering Lead, Identity and Authentication to this effort
Kategorie: Hacking & Security

Control Flow Integrity in the Android kernel

12 Říjen, 2018 - 15:28

Posted by Sami Tolvanen, Staff Software Engineer, Android Security & Privacy

[Cross-posted from the Android Developers Blog]

Android's security model is enforced by the Linux kernel, which makes it a tempting target for attackers. We have put a lot of effort into hardening the kernel in previous Android releases and in Android 9, we continued this work by focusing on compiler-based security mitigations against code reuse attacks.
Google's Pixel 3 will be the first Android device to ship with LLVM's forward-edge Control Flow Integrity (CFI) enforcement in the kernel, and we have made CFI support available in Android kernel versions 4.9 and 4.14. This post describes how kernel CFI works and provides solutions to the most common issues developers might run into when enabling the feature.
Protecting against code reuse attacksA common method of exploiting the kernel is using a bug to overwrite a function pointer stored in memory, such as a stored callback pointer or a return address that had been pushed to the stack. This allows an attacker to execute arbitrary parts of the kernel code to complete their exploit, even if they cannot inject executable code of their own. This method of gaining code execution is particularly popular with the kernel because of the huge number of function pointers it uses, and the existing memory protections that make code injection more challenging.
CFI attempts to mitigate these attacks by adding additional checks to confirm that the kernel's control flow stays within a precomputed graph. This doesn't prevent an attacker from changing a function pointer if a bug provides write access to one, but it significantly restricts the valid call targets, which makes exploiting such a bug more difficult in practice.

Figure 1. In an Android device kernel, LLVM's CFI limits 55% of indirect calls to at most 5 possible targets and 80% to at most 20 targets.Gaining full program visibility with Link Time Optimization (LTO)In order to determine all valid call targets for each indirect branch, the compiler needs to see all of the kernel code at once. Traditionally, compilers work on a single compilation unit (source file) at a time and leave merging the object files to the linker. LLVM's solution to CFI is to require the use of LTO, where the compiler produces LLVM-specific bitcode for all C compilation units, and an LTO-aware linker uses the LLVM back-end to combine the bitcode and compile it into native code.

Figure 2. A simplified overview of how LTO works in the kernel. All LLVM bitcode is combined, optimized, and generated into native code at link time.Linux has used the GNU toolchain for assembling, compiling, and linking the kernel for decades. While we continue to use the GNU assembler for stand-alone assembly code, LTO requires us to switch to LLVM's integrated assembler for inline assembly, and either GNU gold or LLVM's own lld as the linker. Switching to a relatively untested toolchain on a huge software project will lead to compatibility issues, which we have addressed in our arm64 LTO patch sets for kernel versions 4.9 and 4.14.
In addition to making CFI possible, LTO also produces faster code due to global optimizations. However, additional optimizations often result in a larger binary size, which may be undesirable on devices with very limited resources. Disabling LTO-specific optimizations, such as global inlining and loop unrolling, can reduce binary size by sacrificing some of the performance gains. When using GNU gold, the aforementioned optimizations can be disabled with the following additions to LDFLAGS:
LDFLAGS += -plugin-opt=-inline-threshold=0 \
-plugin-opt=-unroll-threshold=0Note that flags to disable individual optimizations are not part of the stable LLVM interface and may change in future compiler versions.
Implementing CFI in the Linux kernelLLVM's CFI implementation adds a check before each indirect branch to confirm that the target address points to a valid function with a correct signature. This prevents an indirect branch from jumping to an arbitrary code location and even limits the functions that can be called. As C compilers do not enforce similar restrictions on indirect branches, there were several CFI violations due to function type declaration mismatches even in the core kernel that we have addressed in our CFI patch sets for kernels 4.9 and 4.14.
Kernel modules add another complication to CFI, as they are loaded at runtime and can be compiled independently from the rest of the kernel. In order to support loadable modules, we have implemented LLVM's cross-DSO CFI support in the kernel, including a CFI shadow that speeds up cross-module look-ups. When compiled with cross-DSO support, each kernel module contains information about valid local branch targets, and the kernel looks up information from the correct module based on the target address and the modules' memory layout.

Figure 3. An example of a cross-DSO CFI check injected into an arm64 kernel. Type information is passed in X0 and the target address to validate in X1.CFI checks naturally add some overhead to indirect branches, but due to more aggressive optimizations, our tests show that the impact is minimal, and overall system performance even improved 1-2% in many cases.
Enabling kernel CFI for an Android deviceCFI for arm64 requires clang version >= 5.0 and binutils >= 2.27. The kernel build system also assumes that the LLVMgold.so plug-in is available in LD_LIBRARY_PATH. Pre-built toolchain binaries for clang and binutils are available in AOSP, but upstream binaries can also be used.
The following kernel configuration options are needed to enable kernel CFI:
CONFIG_LTO_CLANG=y
CONFIG_CFI_CLANG=yUsing CONFIG_CFI_PERMISSIVE=y may also prove helpful when debugging a CFI violation or during device bring-up. This option turns a violation into a warning instead of a kernel panic.
As mentioned in the previous section, the most common issue we ran into when enabling CFI on Pixel 3 were benign violations caused by function pointer type mismatches. When the kernel runs into such a violation, it prints out a runtime warning that contains the call stack at the time of the failure, and the call target that failed the CFI check. Changing the code to use a correct function pointer type fixes the issue. While we have fixed all known indirect branch type mismatches in the Android kernel, similar problems may be still found in device specific drivers, for example.
CFI failure (target: [<fffffff3e83d4d80>] my_target_function+0x0/0xd80):
------------[ cut here ]------------
kernel BUG at kernel/cfi.c:32!
Internal error: Oops - BUG: 0 [#1] PREEMPT SMP

Call trace:

[<ffffff8752d00084>] handle_cfi_failure+0x20/0x28
[<ffffff8752d00268>] my_buggy_function+0x0/0x10
…Figure 4. An example of a kernel panic caused by a CFI failure.Another potential pitfall are address space conflicts, but this should be less common in driver code. LLVM's CFI checks only understand kernel virtual addresses and any code that runs at another exception level or makes an indirect call to a physical address will result in a CFI violation. These types of failures can be addressed by disabling CFI for a single function using the __nocfi attribute, or even disabling CFI for entire code files using the $(DISABLE_CFI) compiler flag in the Makefile.
static int __nocfi address_space_conflict()
{
void (*fn)(void);

/* branching to a physical address trips CFI w/o __nocfi */
fn = (void *)__pa_symbol(function_name);
cpu_install_idmap();
fn();
cpu_uninstall_idmap();

}Figure 5. An example of fixing a CFI failure caused by an address space conflict.Finally, like many hardening features, CFI can also be tripped by memory corruption errors that might otherwise result in random kernel crashes at a later time. These may be more difficult to debug, but memory debugging tools such as KASAN can help here.
ConclusionWe have implemented support for LLVM's CFI in Android kernels 4.9 and 4.14. Google's Pixel 3 will be the first Android device to ship with these protections, and we have made the feature available to all device vendors through the Android common kernel. If you are shipping a new arm64 device running Android 9, we strongly recommend enabling kernel CFI to help protect against kernel vulnerabilities.
LLVM's CFI protects indirect branches against attackers who manage to gain access to a function pointer stored in kernel memory. This makes a common method of exploiting the kernel more difficult. Our future work involves also protecting function return addresses from similar attacks using LLVM's Shadow Call Stack, which will be available in an upcoming compiler release.
Kategorie: Hacking & Security

Trustworthy Chrome Extensions, by Default

1 Říjen, 2018 - 20:51
Posted by James Wagner, Chrome Extensions Product Manager

[Cross-posted from the Chromium blog]

Incredibly, it’s been nearly a decade since we launched the Chrome extensions system. Thanks to the hard work and innovation of our developer community, there are now more than 180,000 extensions in the Chrome Web Store, and nearly half of Chrome desktop users actively use extensions to customize Chrome and their experience on the web.

The extensions team's dual mission is to help users tailor Chrome’s functionality to their individual needs and interests, and to empower developers to build rich and useful extensions. But, first and foremost, it’s crucial that users be able to trust the extensions they install are safe, privacy-preserving, and performant. Users should always have full transparency about the scope of their extensions’ capabilities and data access.

We’ve recently taken a number of steps toward improved extension security with the launch of out-of-process iframes, the removal of inline installation, and significant advancements in our ability to detect and block malicious extensions using machine learning. Looking ahead, there are more fundamental changes needed so that all Chrome extensions are trustworthy by default.

Today we’re announcing some upcoming changes and plans for the future:

User controls for host permissions

Beginning in Chrome 70, users will have the choice to restrict extension host access to a custom list of sites, or to configure extensions to require a click to gain access to the current page.


While host permissions have enabled thousands of powerful and creative extension use cases, they have also led to a broad range of misuse - both malicious and unintentional - because they allow extensions to automatically read and change data on websites. Our aim is to improve user transparency and control over when extensions are able to access site data. In subsequent milestones, we’ll continue to optimize the user experience toward this goal while improving usability. If your extension requests host permissions, we encourage you to review our transition guide and begin testing as soon as possible.

Changes to the extensions review process

Going forward, extensions that request powerful permissions will be subject to additional compliance review. We’re also looking very closely at extensions that use remotely hosted code, with ongoing monitoring. Your extension’s permissions should be as narrowly-scoped as possible, and all your code should be included directly in the extension package, to minimize review time.
New code reliability requirements

Starting today, Chrome Web Store will no longer allow extensions with obfuscated code. This includes code within the extension package as well as any external code or resource fetched from the web. This policy applies immediately to all new extension submissions. Existing extensions with obfuscated code can continue to submit updates over the next 90 days, but will be removed from the Chrome Web Store in early January if not compliant.

Today over 70% of malicious and policy violating extensions that we block from Chrome Web Store contain obfuscated code. At the same time, because obfuscation is mainly used to conceal code functionality, it adds a great deal of complexity to our review process. This is no longer acceptable given the aforementioned review process changes.

Additionally, since JavaScript code is always running locally on the user's machine, obfuscation is insufficient to protect proprietary code from a truly motivated reverse engineer. Obfuscation techniques also come with hefty performance costs such as slower execution and increased file and memory footprints.

Ordinary minification, on the other hand, typically speeds up code execution as it reduces code size, and is much more straightforward to review. Thus, minification will still be allowed, including the following techniques:

  • Removal of whitespace, newlines, code comments, and block delimiters
  • Shortening of variable and function names
  • Collapsing the number of JavaScript files
If you have an extension in the store with obfuscated code, please review our updated content policies as well as our recommended minification techniques for Google Developers, and submit a new compliant version before January 1st, 2019.

Required 2-step verification
In 2019, enrollment in 2-Step Verification will be required for Chrome Web Store developer accounts. If your extension becomes popular, it can attract attackers who want to steal it by hijacking your account, and 2-Step Verification adds an extra layer of security by requiring a second authentication step from your phone or a physical security key. We strongly recommend that you enroll as soon as possible.
For even stronger account security, consider the Advanced Protection Program. Advanced protection offers the same level of security that Google relies on for its own employees, requiring a physical security key to provide the strongest defense against phishing attacks.

Looking ahead: Manifest v3
In 2019 we will introduce the next extensions manifest version. Manifest v3 will entail additional platform changes that aim to create stronger security, privacy, and performance guarantees. We want to help all developers fall into the pit of success; writing a secure and performant extension in Manifest v3 should be easy, while writing an insecure or non-performant extension should be difficult.
Some key goals of manifest v3 include:
  • More narrowly-scoped and declarative APIs, to decrease the need for overly-broad access and enable more performant implementation by the browser, while preserving important functionality
  • Additional, easier mechanisms for users to control the permissions granted to extensions
  • Modernizing to align with new web capabilities, such as supporting Service Workers as a new type of background process
We intend to make the transition to manifest v3 as smooth as possible and we’re thinking carefully about the rollout plan. We’ll be in touch soon with more specific details.
We recognize that some of the changes announced today may require effort in the future, depending on your extension. But we believe the collective result will be worth that effort for all users, developers, and for the long term health of the Chrome extensions ecosystem. We’re committed to working with you to transition through these changes and are very interested in your feedback. If you have questions or comments, please get in touch with us on the Chromium extensions forum.
Kategorie: Hacking & Security

Android and Google Play Security Rewards Programs surpass $3M in payouts

20 Září, 2018 - 18:44
table, th, td { border: 1px solid black; } td { width:100px; }
Posted by Jason Woloz and Mayank Jain, Android Security & Privacy Team

[Cross-posted from the Android Developers Blog]

Our Android and Play security reward programs help us work with top researchers from around the world to improve Android ecosystem security every day. Thank you to all the amazing researchers who submitted vulnerability reports.

Android Security RewardsIn the ASR program's third year, we received over 470 qualifying vulnerability reports from researchers and the average pay per researcher jumped by 23%. To date, the ASR program has rewarded researchers with over $3M, paying out roughly $1M per year.
Here are some of the highlights from the Android Security Rewards program's third year:
  • There were no payouts for our highest possible reward: a complete remote exploit chain leading to TrustZone or Verified Boot compromise.
  • 99 individuals contributed one or more fixes.
  • The ASR program's reward averages were $2,600 per reward and $12,500 per researcher.
  • Guang Gong received our highest reward amount to date: $105,000 for his submission of a remote exploit chain.
As part of our ongoing commitment to security we regularly update our programs and policies based on ecosystem feedback. We also updated our severity guidelines for evaluating the impact of reported security vulnerabilities against the Android platform.

Google Play Security RewardsIn October 2017, we rolled out the Google Play Security Reward Program to encourage security research into popular Android apps available on Google Play. So far, researchers have reported over 30 vulnerabilities through the program, earning a combined bounty amount of over $100K.
If undetected, these vulnerabilities could have potentially led to elevation of privilege, access to sensitive data and remote code execution on devices.

Keeping devices secureIn addition to rewarding for vulnerabilities, we continue to work with the broad and diverse Android ecosystem to protect users from issues reported through our program. We collaborate with manufacturers to ensure that these issues are fixed on their devices through monthly security updates. Over 250 device models have a majority of their deployed devices running a security update from the last 90 days. This table shows the models with a majority of deployed devices running a security update from the last three months:


ManufacturerDeviceANSL50AsusZenFone 5Z (ZS620KL/ZS621KL), ZenFone Max Plus M1 (ZB570TL), ZenFone 4 Pro (ZS551KL), ZenFone 5 (ZE620KL), ZenFone Max M1 (ZB555KL), ZenFone 4 (ZE554KL), ZenFone 4 Selfie Pro (ZD552KL), ZenFone 3 (ZE552KL), ZenFone 3 Zoom (ZE553KL), ZenFone 3 (ZE520KL), ZenFone 3 Deluxe (ZS570KL), ZenFone 4 Selfie (ZD553KL), ZenFone Live L1 (ZA550KL), ZenFone 5 Lite (ZC600KL), ZenFone 3s Max (ZC521TL)BlackBerryBlackBerry MOTION, BlackBerry KEY2BluGrand XL LTE, Vivo ONE, R2_3G, Grand_M2, BLU STUDIO J8 LTEbqAquaris V Plus, Aquaris V, Aquaris U2 Lite, Aquaris U2, Aquaris X, Aquaris X2, Aquaris X Pro, Aquaris U Plus, Aquaris X5 Plus, Aquaris U lite, Aquaris UDocomoF-04K, F-05J, F-03HEssential ProductsPH-1FujitsuF-01KGeneral MobileGM8, GM8 GoGooglePixel 2 XL, Pixel 2, Pixel XL, PixelHTCU12+, HTC U11+HuaweiHonor Note10, nova 3, nova 3i, Huawei Nova 3I, 荣耀9i, 华为G9青春版, Honor Play, G9青春版, P20 Pro, Honor V9, huawei nova 2, P20 lite, Honor 10, Honor 8 Pro, Honor 6X, Honor 9, nova 3e, P20, PORSCHE DESIGN HUAWEI Mate RS, FRD-L02, HUAWEI Y9 2018, Huawei Nova 2, Honor View 10, HUAWEI P20 Lite, Mate 9 Pro, Nexus 6P, HUAWEI Y5 2018, Honor V10, Mate 10 Pro, Mate 9, Honor 9, Lite, 荣耀9青春版, nova 2i, HUAWEI nova 2 Plus, P10 lite, nova 青春版本, FIG-LX1, HUAWEI G Elite Plus, HUAWEI Y7 2018, Honor 7S, HUAWEI P smart, P10, Honor 7C, 荣耀8青春版, HUAWEI Y7 Prime 2018, P10 Plus, 荣耀畅玩7X, HUAWEI Y6 2018, Mate 10 lite, Honor 7A, P9 Plus, 华为畅享8, honor 6x, HUAWEI P9 lite mini, HUAWEI GR5 2017, Mate 10ItelP13KyoceraX3LanixAlpha_950, Ilium X520LavaZ61, Z50LGELG Q7+, LG G7 ThinQ, LG Stylo 4, LG K30, V30+, LG V35 ThinQ, Stylo 2 V, LG K20 V, ZONE4, LG Q7, DM-01K, Nexus 5X, LG K9, LG K11MotorolaMoto Z Play Droid, moto g(6) plus, Moto Z Droid, Moto X (4), Moto G Plus (5th Gen), Moto Z (2) Force, Moto G (5S) Plus, Moto G (5) Plus, moto g(6) play, Moto G (5S), moto e5 play, moto e(5) play, moto e(5) cruise, Moto E4, Moto Z Play, Moto G (5th Gen)NokiaNokia 8, Nokia 7 plus, Nokia 6.1, Nokia 8 Sirocco, Nokia X6, Nokia 3.1OnePlusOnePlus 6, OnePlus5T, OnePlus3T, OnePlus5, OnePlus3OppoCPH1803, CPH1821, CPH1837, CPH1835, CPH1819, CPH1719, CPH1613, CPH1609, CPH1715, CPH1861, CPH1831, CPH1801, CPH1859, A83, R9s PlusPositivoTwist, Twist MiniSamsungGalaxy A8 Star, Galaxy J7 Star, Galaxy Jean, Galaxy On6, Galaxy Note9, Galaxy J3 V, Galaxy A9 Star, Galaxy J7 V, Galaxy S8 Active, Galaxy Wide3, Galaxy J3 Eclipse, Galaxy S9+, Galaxy S9, Galaxy A9 Star Lite, Galaxy J7 Refine, Galaxy J7 Max, Galaxy Wide2, Galaxy J7(2017), Galaxy S8+, Galaxy S8, Galaxy A3(2017), Galaxy Note8, Galaxy A8+(2018), Galaxy J3 Top, Galaxy J3 Emerge, Galaxy On Nxt, Galaxy J3 Achieve, Galaxy A5(2017), Galaxy J2(2016), Galaxy J7 Pop, Galaxy A6, Galaxy J7 Pro, Galaxy A6 Plus, Galaxy Grand Prime Pro, Galaxy J2 (2018), Galaxy S6 Active, Galaxy A8(2018), Galaxy J3 Pop, Galaxy J3 Mission, Galaxy S6 edge+, Galaxy Note Fan Edition, Galaxy J7 Prime, Galaxy A5(2016)Sharpシンプルスマホ4, AQUOS sense plus (SH-M07), AQUOS R2 SH-03K, X4, AQUOS R SH-03J, AQUOS R2 SHV42, X1, AQUOS sense lite (SH-M05)SonyXperia XZ2 Premium, Xperia XZ2 Compact, Xperia XA2, Xperia XA2 Ultra, Xperia XZ1 Compact, Xperia XZ2, Xperia XZ Premium, Xperia XZ1, Xperia L2, Xperia XTecnoF1, CAMON I AceVestelVestel Z20Vivovivo 1805, vivo 1803, V9 6GB, Y71, vivo 1802, vivo Y85A, vivo 1726, vivo 1723, V9, vivo 1808, vivo 1727, vivo 1724, vivo X9s Plus, Y55s, vivo 1725, Y66, vivo 1714, 1609, 1601VodafoneVodafone Smart N9XiaomiMi A2, Mi A2 Lite, MI 8, MI 8 SE, MIX 2S, Redmi 6Pro, Redmi Note 5 Pro, Redmi Note 5, Mi A1, Redmi S2, MI MAX 2, MI 6XZTEBLADE A6 MAX

Thank you to everyone internally and externally who helped make Android safer and stronger in the past year. Together, we made a huge investment in security research that helps Android users everywhere. If you want to get involved to make next year even better, check out our detailed program rules. For tips on how to submit complete reports, see Bug Hunter University.
Kategorie: Hacking & Security