Transhumanismus
This Radical New Farming Method Would Replace Photosynthesis With Solar Power
Farming immediately sparks images of lush fields of leafy greens under a blue sky, corn blowing in the wind, or majestic terraced rice paddies carved into mountainsides. Agriculture changed societies and our food habits roughly 12,000 years ago when humans switched from nomadic hunter-gatherer lifestyles to more permanent settlements.
In recent centuries, innovative farming equipment and synthetic chemical fertilizers have boosted food production to feed an increasingly growing population of people. But as any backyard gardener knows, growing plant-based food—lettuce, tomatoes, herbs, grains, pumpkins—still mostly relies on the age-old strategy: Plant seeds in nutritious soil, keep them well hydrated with plenty of sunlight, and wait for them to grow.
This strategy has downsides. Agriculture uses nearly half of the world’s habitable land and accounts for up to a third of human-generated greenhouse gas emissions, wrote Feng Jiao at the Washington University in St. Louis and his team in a recent analysis.
The reason? While sunny regions naturally provide enough light to grow crops, areas with colder winters often need grow lights and greenhouses part of the year. This increases energy consumption, logistical headaches, and ultimately, food costs.
In their paper, Jiao and colleagues argue for a new method that could dramatically revamp farming practices to reduce land use and greenhouse gas emissions.
Dubbed “electro-agriculture,” the approach uses solar panels to trigger a chemical reaction that turns ambient CO2 into an energy source called acetate. Certain mushrooms, yeast, and algae already consume acetate as food. With a slight genetic tweak, we could also engineer other common foods such as grains, tomatoes, or lettuce to consume acetate.
It could be “a groundbreaking revolution in farming,” wrote the team.
According to one estimate, if the US were to fully adopt electro-agriculture, it would reduce agricultural land use by nearly 90 percent. A similar system could also allow more efficient crop growth during spaceflight, where efficiency in small spaces is key. With more research, it might even be possible to bypass traditional photosynthesis with acetate and grow plants in the dark.
“The whole point of this new process [is] to try to boost the efficiency of photosynthesis,” said Jiao in a press release. “Right now, we are at about four percent efficiency, which is already four times higher than for photosynthesis, and because everything is more efficient with this method, the CO2 footprint associated with the production of the food becomes much smaller.”
Man Versus FoodAgriculture is one of the most difficult domains in which to reduce carbon emissions. As the global population increases, its impact on the environment will likely grow.
“There is an urgent need for the global food system to be reimagined to sustain a habitable planet,” wrote the team.
Photosynthesis is at the heart of agriculture. In plants and some bacteria, green-tinted molecular machines called chloroplasts absorb sunlight and churn that light into energy. It’s no coincidence most farms are in sun-bathed areas liked central California.
Farmers and scientists have tried shrinking the agricultural footprint with vertical farming. True to form, vertical farms grow crops on stacked shelves rather than large horizontal fields. The method often relies on hydroponics, in which plants absorb nutrients from a water-based system instead of soil, similar to AeroGarden but at an industrial scale.
These systems run indoors, so plants can grow all year. But heavy reliance on artificial grow lights means high energy consumption limits their ability to scale.
Part of the problem is efficiency. Much of the “electricity supplied to the LED grow lights in conventional vertical farming is lost to heat,” explained the team.
Electro-agriculture, or “electro-ag,” skirts these challenges. The system captures ambient CO2 from the air and uses water and electricity to convert the gas into different molecules—including ethanol and acetate, which is “plant food” for some species.
Acetate is a vinegar-like chemical at the heart of many biological reactions. One recent study found that acetate made from CO2 could be used to cultivate yeast, mushrooms, and a type of green algae in total darkness without the need for natural photosynthesis. With some sunlight, the chemical boosted growth four-fold in nine different crop types compared to traditional farming techniques.
These initial results got scientists wondering: Can we use acetate alone to replace photosynthesis?
Not quite. Most adult crop plants naturally require photosynthesis to build up their weight and size. Plants grown with electro-ag would need to shift their metabolism to consume acetate—which most adult plants struggle to process—as a primary food source.
But plants can use the molecule for energy as they’re germinating from seeds. It’s a bit like people who drank milk as infants but later became lactose intolerant. The genetic programming is still there; it just needs to be reactivated.
Here’s where genetic engineering comes in.
By tweaking genes involved in acetate metabolism, it might be possible to reawaken the plants’ natural ability to digest the molecule. The strategy hasn’t been directly tested yet. But in bacteria, amping up a gene involved in acetate metabolism boosted their ability to eat it.
Engineering plants that eat acetate is a “critical step” toward building an electro-ag system.
The team envision a vertically stacked set-up to reduce land usage, kind of like a fridge with three sections. The first section—the roof—would be covered in solar panels to gather energy. The middle section would use this energy to break down CO2 and generate acetate to feed plants growing in the bottom section. Depending on the type of crop, this section could hold roughly three to seven “floors” of plants stacked on top of each other, like trays in a fridge.
Into the WildElectro-ag could benefit the environment, slashing total land usage for farming by roughly 88 percent in the US alone. This would free up over one billion acres of land that could be restored to natural ecosystems, such as dense forests. The technology could also help stabilize food prices. As weather becomes increasingly unpredictable due to climate change, developing nations are often hit hardest. A large-scale indoor system could help put a lid on volatility.
But how much all this would cost is still uncertain. The field is still in a very early stage. Currently, scientists are tweaking tomato and lettuce genes to increase their abilities to use acetate as food. High-calorie staple crops, such as potato, corn, rice, and wheat, are next on the list. Plants aside, a similar technology—in theory—could also be used for cultivating dairy and plant-based meat, although the idea hasn’t been tested yet.
“This is just the first step for this research, and I think there’s a hope that its efficiency and cost will be significantly improved in the near future,” said Jiao.
Image Credit: Francesco Gallarotti on Unsplash
Scientists Just Discovered Over 70,000 Bizarre New Viruses With AI
Viruses are everywhere. They’re in the air; in sewage, lakes, and oceans; in grasslands and decaying wood. Some thrive in extreme conditions, like hydrothermal vents, Antarctic ice, and potentially even outer space.
They’re also ancient. Some are likely as old as, if not even older than, the very first cells.
Despite cohabitating with viruses since the dawn of our species, the viral universe remains largely mysterious. For decades, scientists have painstakingly gathered samples from around the globe and sequenced their genetic material. But viruses rapidly mutate, and these efforts only scrape the surface of the virosphere.
Most viral genetic material is biological “dark matter,” Mang Shi at Sun Yat-sen University and colleagues recently wrote in a new paper published in Cell.
With the help of AI, the team is shedding new light on the viral world. The AI, dubbed LucaProt, relies on a large language model to make sense of chunks of viral genetic material. Another algorithm further parses genetic data into more “digestible” bits to increase efficacy.
After analyzing nearly 10,500 samples—some from previous databases, others collected during the study—the AI detected 70,458 new RNA viruses from samples all over the globe.
“All of a sudden you can see things that you just weren’t seeing before,” Artem Babaian at the University of Toronto, who wasn’t involved in the study, told Nature.
Viruses have a bad reputation. The Covid-19 pandemic and annual flu season highlight their destructive side. But they can also be used to battle antibiotic-resistant bacteria, shuttle gene therapies into cells, or be developed into vaccines.
Charting the viral universe offers a bird’s-eye view on the evolution and mutation of viruses—with implications not just for biotechnology but potentially for battling the next pandemic too.
Going ViralIn humans, DNA carries the genetic blueprint. DNA translates to RNA—also made up of four genetic letters—which carries the genetic information into a cellular factory to make proteins.
Viruses are different. Some forgo DNA altogether, instead directly encoding their genetic blueprint in RNA. It sounds unusual, but you already know some of these viruses: SARS-CoV-2, which causes Covid-19, is an RNA virus. These viruses have proteins that science knows little about, and they could also offer new insight into biology.
For decades, scientists have tried to decode the virosphere by collecting samples. The sources range from the everyday—water from a local creek—to the extreme, such as Antarctic ice or deep seawater. RNA extracted from these samples is carefully sequenced and deposited into databases. This method, called metagenomics, captures snippets of all viral RNA from an environment.
Making sense of the genetic goldmine takes more work. Classic computational methods struggle to sift these large databases for meaningful insights.
Enter ESMFold. Developed by Meta, the program relies on large language models—the same technology powering OpenAI’s ChatGPT and Google’s Gemini—to predict protein structures based on their amino acid “letters.” Similar methods, including DeepMind’s AlphaFold and David Baker’s RoseTTAFold, recently won their developers the 2024 Nobel Prize in Chemistry.
ESMFold takes in molecular sequences and predicts the 3D structures of proteins at the atomic level. For its first real-life task, scientists used the AI to decode the “dark matter” of proteins in microbes we know the least about. Last year, the AI predicted the structure of over 700 million proteins from microorganisms. Ten percent were completely alien to any previously discovered.
Taking note, Shi’s team asked if a similar strategy could work in the world of RNA viruses.
Panning for VirusesScientists have previously used AI to fish out potential new RNA viruses from petabytes of genetic sequencing data—an amount roughly equivalent to 500 million high-resolution photos.
These studies focused on RNA-dependent RNA polymerase, or RdRP. Here, the RNA sequences encode RdRPs, a family of proteins that tags most RNA virus genomes. An early analysis identified nearly 132,000 new RNA viruses based on their genetic data.
The problem? Viruses rapidly mutate. If the genetic letters encoding RdRPs change, AI trained on those sequences may not be able to recognize mutated viruses. The new study tackled the problem by marrying the previous approach with ESMFold in a two-channel AI.
The first channel uses a transformer-based model, similar to ChatGPT, to extract amino acid sequence “keywords” encoding viral RdRPs from a large database. After training with the desired sequences, and some that were randomly generated, the AI created a vocabulary of about 20,000 frequently occurring protein sequences encoding for RdRPs.
Compared to previous methods, this step breaks genetic libraries into more digestible sections, making it easier for the AI to tackle longer genetic sequences and detect viral RdRP proteins.
The second channel taps a version of ESMFold. This is the slow but careful reader. Rather than blazing through protein words, it “reads” every single letter and predicts how each structurally connects with others to form 3D protein shapes. This step grounds the AI, giving it an idea of how RdRPs should look in living viruses.
LucaProt was trained on nearly 6,000 sequences encoding RdRP proteins and over 229,500 sequences known to encode different proteins. Challenged with a test dataset, in which the researchers knew the answers, the AI was exceptionally accurate, returning false positives only 0.014 percent of the time.
The AI found 70,458 potential new, unique viruses. One, isolated from dirt, had a surprisingly long genome—”one of the longest RNA viruses identified to date,” wrote the team. Others could thrive in hot springs and extremely salty lakes.
The expanded virosphere adds new viruses to known viral groups—for example, Flaviviridae, which causes hepatitis or yellow fever. LucaProt also identified 60 different viral groups, each highly different than all known viruses today.
It’s not to say they cause diseases, but they “have largely been overlooked in previous RNA virus discovery projects,” wrote the team.
To Babaian, the study found “little pockets of RNA virus biodiversity that are really far off in the boonies of evolutionary space.”
A Viral Hit?Viruses require a living host to survive. The team is upgrading their AI to predict these hosts. Most RNA viruses infect eukaryotes, which include plants, animals, and humans. Some viruses can also infect bacteria—their cat-and-mouse game inspired the gene editor CRISPR-Cas9.
“The evolutionary history of RNA viruses is at least as long, if not longer, than that of the cellular organisms,” wrote the authors.
Often ignored is the third branch of life, archaea. Evolved during the early stages of life on Earth, these lifeforms share similarities to bacteria and eukaryotes—for example, how their genetic material replicates.
But archaea are a distinct branch of life that thrives in extreme environments, such as hydrothermal vents or extremely salty water. There are hints that RNA viruses could also infect archaea. If so, it could spur new insights into our tree of life—and as with CRISPR, potentially lead to new biotechnologies.
Image Credit: National Institute of Allergy and Infectious Diseases / Unsplash
Make Music A Full Body Experience With A “Vibro-Tactile” Suit
Tired: Listening to music.
Wired: Feeling the music.
A mind-bending new suit straps onto your torso, ankles and wrists, then uses actuators to translate audio into vivid vibration. The result: a new way for everyone to experience music, according to its creators. That’s especially exciting for people who have trouble hearing.
THE FEELIESThe Music: Not Impossible suit was created by design firm Not Impossible Labs and electronics manufacturing company Avnet. The suit can create sensations to go with pre-recorded music, or a “Vibrotactile DJ” can adjust the sensations in real time during a live music event.”
Billboard writer Andy Hermann tried the suit out, and it sounds like a trip.
“Sure enough, a pulse timed to a kickdrum throbs into my ankles and up through my legs,” he wrote. “Gradually, [the DJ] brings in other elements: the tap of a woodblock in my wrists, a bass line massaging my lower back, a harp tickling a melody across my chest.”
MORE ACCESSIBLETo show the suit off, Not Impossible and Avnet organized a performance this past weekend by the band Greta Van Fleet at the Life is Beautiful Festival in Las Vegas. The company allowed attendees to don the suits. Mandy Harvey, a deaf musician who stole the show on America’s Got Talent last year, talked about what the performance meant to her in a video Avnet posted to Facebook.
“It was an unbelievable experience to have an entire audience group who are all experiencing the same thing at the same time,” she said. “For being a deaf person, showing up at a concert, that never happens. You’re always excluded.”
READ MORE: Not Impossible Labs, Zappos Hope to Make Concerts More Accessible for the Deaf — and Cooler for Everyone [Billboard]
More on accessible design: New Tech Allows Deaf People To Sense Sounds
The post Make Music A Full Body Experience With A “Vibro-Tactile” Suit appeared first on Futurism.
“Synthetic Skin” Could Give Prosthesis Users a Superhuman Sense of Touch
Today’s prosthetics can give people with missing limbs the ability to do almost anything — run marathons, climb mountains, you name it. But when it comes to letting those people feel what they could with a natural limb, the devices, however mechanically sophisticated, invariably fall short.
Now researchers have created a “synthetic skin” with a sense of touch that not only matches the sensitivity of natural skin, but in some cases even exceeds it. Now the only challenge is getting that information back into the wearer’s nervous system.
UNDER PRESSUREWhen something presses against your skin, your nerves receive and transmit that pressure to the brain in the form of electrical signals.
To mimic that biological process, the researchers suspended a flexible polymer, dusted with magnetic particles, over a magnetic sensor. The effect is like a drum: Applying even the tiniest amount of pressure to the membrane causes the magnetic particles to move closer to the sensors, and they transmit this movement electronically.
The research, which could open the door to super-sensitive prosthetics, was published Wednesday in the journal Science Robotics.
SPIDEY SENSE TINGLINGTests shows that the skin can sense extremely subtle pressure, such as a blowing breeze, dripping water, or crawling ants. In some cases, the synthetic skin responded to pressures so gentle that natural human skin wouldn’t be able to detect them.
While the sensing ability of this synthetic skin is remarkable, the team’s research doesn’t address how to transmit the signals to the human brain. Other scientists are working on that, though, so eventually this synthetic skin could give prosthetic wearers the ability to feel forces even their biological-limbed friends can’t detect.
READ MORE: A Skin-Inspired Tactile Sensor for Smart Prosthetics [Science Robotics]
More on synthetic skin: Electronic Skin Lets Amputees Feel Pain Through Their Prosthetics
The post “Synthetic Skin” Could Give Prosthesis Users a Superhuman Sense of Touch appeared first on Futurism.
People Are Zapping Their Brains to Boost Creativity. Experts Have Concerns.
There’s a gadget that some say can help alleviate depression and enhance creativity. All you have to do is place a pair of electrodes on your scalp and the device will deliver electrical current to your brain. It’s readily available on Amazon or you can even make your own.
But in a new paper published this week in the Creativity Research Journal, psychologists at Georgetown University warned that the practice is spreading before we have a good understanding of its health effects, especially since consumers are already buying and building unregulated devices to shock them. They also cautioned that the technique, which scientists call transcranial electrical stimulation (tES), could have adverse effects on the brains of young people.
“There are multiple potential concerns with DIY-ers self-administering electric current to their brains, but this use of tES may be inevitable,” said co-author Adam Green in a press release. “And, certainly, anytime there is risk of harm with a technology, the scariest risks are those associated with kids and the developing brain”
SHOCK JOCKYes, there’s evidence that tES can help patients with depression, anxiety, Parkinson’s disease, and other serious conditions, the Georgetown researchers acknowledge.
But that’s only when it’s administered by a trained health care provider. When administering tES at home, people might ignore safety directions, they wrote, or their home-brewed devices could deliver unsafe amounts of current. And because it’s not yet clear what effects of tES might be on the still-developing brains of young people, the psychologists advise teachers and parents to resist the temptation to use the devices to encourage creativity among children.
The takeaway: tES is likely here to stay, and it may provide real benefits. But for everyone’s sake, consumer-oriented tES devices should be regulated to protect users.
READ MORE: Use of electrical brain stimulation to foster creativity has sweeping implications [Eurekalert]
More on transcranial electrical stimulation: DARPA’s New Brain Device Increases Learning Speed by 40%
The post People Are Zapping Their Brains to Boost Creativity. Experts Have Concerns. appeared first on Futurism.
Military Pilots Can Control Three Jets at Once via a Neural Implant
The military is making it easier than ever for soldiers to distance themselves from the consequences of war. When drone warfare emerged, pilots could, for the first time, sit in an office in the U.S. and drop bombs in the Middle East.
Now, one pilot can do it all, just using their mind — no hands required.
Earlier this month, DARPA, the military’s research division, unveiled a project that it had been working on since 2015: technology that grants one person the ability to pilot multiple planes and drones with their mind.
“As of today, signals from the brain can be used to command and control … not just one aircraft but three simultaneous types of aircraft,” Justin Sanchez, director of DARPA’s Biological Technologies Office, said, according to Defense One.
THE SINGULARITYSanchez may have unveiled this research effort at a “Trajectory of Neurotechnology” session at DARPA’s 60th anniversary event, but his team has been making steady progress for years. Back in 2016, a volunteer equipped with a brain-computer interface (BCI) was able to pilot an aircraft in a flight simulator while keeping two other planes in formation — all using just his thoughts, a spokesperson from DARPA’s Biological Technologies Office told Futurism.
In 2017, Copeland was able to steer a plane through another simulation, this time receiving haptic feedback — if the plane needed to be steered in a certain direction, Copeland’s neural implant would create a tingling sensation in his hands.
NOT QUITE MAGNETOThere’s a catch. The DARPA spokesperson told Futurism that because this BCI makes use of electrodes implanted in and on the brain’s sensory and motor cortices, experimentation has been limited to volunteers with varying degrees of paralysis. That is: the people steering these simulated planes already had brain electrodes, or at least already had reason to undergo surgery.
To try and figure out how to make this technology more accessible and not require surgical placement of a metal probe into people’s brains, DARPA recently launched the NExt-Generation Nonsurgical Neurotechnology (N3) program. The plan is to make a device with similar capabilities, but it’ll look more like an EEG cap that the pilot can take off once a mission is done.
“The envisioned N3 system would be a tool that the user could wield for the duration of a task or mission, then put aside,” said Al Emondi, head of N3, according to the spokesperson. “I don’t like comparisons to a joystick or keyboard because they don’t reflect the full potential of N3 technology, but they’re useful for conveying the basic notion of an interface with computers.”
READ MORE: It’s Now Possible To Telepathically Communicate with a Drone Swarm [Defense One]
More on DARPA research: DARPA Is Funding Research Into AI That Can Explain What It’s “Thinking”
The post Military Pilots Can Control Three Jets at Once via a Neural Implant appeared first on Futurism.
Lab-Grown Bladders Can Save People From a Lifetime of Dialysis
Today, about 10 people on Earth have bladders they weren’t born with. No, they didn’t receive bladder transplants — doctors grew these folks new bladders using the recipients’ own cells.
On Tuesday, the BBC published a report on the still-nascent procedure of transplanting lab-grown bladders. In it, the publication talks to Luke Massella, who underwent the procedure more than a decade ago. Massella was born with spina bifida, which carries with it a risk of damage to the bladder and urinary tract. Now, he lives a normal life, he told the BBC.
“I was kind of facing the possibility I might have to do dialysis [blood purification via machine] for the rest of my life,” he said. “I wouldn’t be able to play sports, and have the normal kid life with my brother.”
All that changed after Anthony Atala, a surgeon at Boston Children’s Hospital, decided he was going to grow a new bladder for Massella.
ONE NEW BLADDER, COMING UP!To do that, Atala first removed a small piece of Massella’s own bladder. He then removed cells from this portion of bladder and multiplied them in a petri dish. Once he had enough cells, he coated a scaffold with the cells and placed the whole thing in a temperature controlled, high oxygen environment. After a few weeks, the lab-created bladder was ready for transplantation into Massella.
“So it was pretty much like getting a bladder transplant, but from my own cells, so you don’t have to deal with rejection,” said Massella.
The number of people with lab-grown bladders might still be low enough to count on your fingers, but researchers are making huge advances in growing everything from organs to skin in the lab. Eventually, we might reach a point when we can replace any body part we need to with a perfect biological match that we built ourselves.
READ MORE: “A New Bladder Made From My Cells Gave Me My Life Back” [BBC]
More on growing organs: The FDA Wants to Expedite Approval of Regenerative Organ Therapies
The post Lab-Grown Bladders Can Save People From a Lifetime of Dialysis appeared first on Futurism.