This Device Zaps the Spinal Cord to Give Paralyzed People Use of Their Hands Again

Singularity HUB - 24 Květen, 2024 - 23:45

Melanie Reid was 52 years old when she hopped onto her horse, fell, and broke her neck. The resulting injury paralyzed her body below the chest area. Fourteen years later and after extensive physical therapy, she has gradually regained some function in her right hand—“a lifeline,” she said in a press conference. But her left hand remained “useless.”

As a journalist, the injury was devasting as she couldn’t type. Even seemingly simple everyday routines—tying her hair up into a ponytail, using an ATM card, or even unwrapping candy—were a struggle.

With the help of a new device, she’s able to do all that after just two months of use. Called ARC-EX therapy, the device zaps residual neural connections around the site of spinal cord injuries. Combined with physical rehabilitation, the treatment restored some functionality in her left hand—even when the stimulation was turned off.

Reid was part of a 60-participant clinical trial that looked to use spinal cord stimulation to regain control of both hands. Similar treatments have shown promise in paraplegic patients, restoring the ability to walk in just a day. But those required surgery to place electrodes on the spinal cord.

ARC-EX therapy, by contrast, delivers two different types of electrical pulses through the skin—no surgery required. Developed by Grégoire Courtine and colleagues at the Swiss Federal Institute of Technology, the device improved hand strength, pinch, and other movements in 72 percent of participants.

Because the device is non-invasive, it’s a simple addition to physical rehabilitation programs—a sort of pilates for the fingers, explained the team. The trial only included two months of stimulation, and extending the timeline could potentially further improve results.

The stimulation only helps with finger and hand dexterity, not walking. But to Reid, that’s what matters. “Everyone thinks that [with] spinal injury all you want to do is to be able to walk again,” she said. But “what matters most is working hands…[and] the gains can be life-changing.”

Broken Bridges

All participants in the trial had a fracture in their spinal cord, roughly at the level of the neck.

With torn nerves, the brain can no longer command the body. Like a broken phone line, when you think “move your hand,” the signal gets lost at the break. Scientists have long tried to bridge this communication “gap” with electrodes to control muscle movement, essentially replacing broken biological wires with artificial ones.

Spinal cord stimulation is one solution. In 2018, a man walked across an entire football field years after he was paralyzed thanks to zaps to his spinal cord. With just a day’s stimulation, people with complete paralysis have been able to stroll around a busy downtown and go kayaking.

The key to recovery, explained the team, is to target living nerves. In a majority of cases, even patients deemed to have a “complete” spinal cord injury still have nerves left, and stimulating them can trigger regrowth and connections.

Picture the spinal cord as a tree, with branches reaching towards the skin. Now, imagine if the “trunk” was partially severed. By zapping the skin around the injury site, it’s possible to transmit electrical signals to the injured spinal cord “trunk” and allow living neurons near the injury site to rebuild neural connections.

“In preclinical models, when applying stimulation, we immediately facilitated movement,” said Courtine. But “even more importantly,” we saw new neuron growth, as if the body was repairing the broken neural system, he added. With sufficient healing, patients could potentially be able to use their hands even without stimulation.

Based on these ideas, the team built the ARC-EX device.

The Trial

The clinical trial included 60 people with neck-level spinal cord injury. All participants underwent two months of physical therapy, followed by another two months of physical therapy combined with ARC-EX stimulation. The group was roughly 46 years old on average.

For physical rehab, each person practiced movements such as pinching, grasping, or moving the whole arm for an hour each day, up to five times a week. Although the therapy improved arm and hand function, progress plateaued for most patients.

The team then added ARC-EX stimulation, with the electrodes placed above and below the site of injury. During therapy, the team controlled the frequency and strength of the zaps, so it facilitated arm and hand movements without causing any unwanted muscle “jerking.”

The trial was “open label,” meaning both participants and researchers know they’re receiving stimulation. This can be risky business because of the placebo effect—when participants recover because they think they’re getting the actual treatment, rather than, say, sham stimulation. However, with ARC-EX it’s impossible to “blind” the stimulation. Turning the device on immediately causes strange sensations in the participants, with the electrical pulses feeling like “a sort of a buzz,” said Reid.  Turning the device off also immediately alerted participants. In one example, Reid said she “was holding a jar with weights with the stimulation on,” but with the stimulation off—unbeknownst to her—she immediately dropped the jar.

In just eight weeks, 72 percent of participants met or exceeded goals for hand strength and dexterity—the ability to grab a mug or pinch a tweezer—as assessed with a battery of tests. Only one person experienced unintended effects—uncontrollable muscle spasms. However, because stimulation was off when they occurred, the team says it’s likely not related to ARC-EX.

The therapy didn’t just improve hand function. The paralyzed participants also felt less pain, had fewer struggles with breathing, and slept better.

Boosted Therapy

The stimulation won’t work for the roughly 10 percent of people with spinal cord injuries that completely severed all neural connections. But for those who still have residual nerve endings, it makes restoring finger movements easier.

Sherown Campbell, another participant in the trial, said ARC-EX is a life-changer. A self-proclaimed “tech geek,” he constantly works on his computer. “Focusing on hand function was the biggest thing I was hoping to improve,” he said.

With ARC-EX therapy, his typing speed increased from 25 words per minute to 33 words per minute, “about a 30 percent increase, which is really significant for me,” he said. But more importantly, his quality of life improved. He can cook and write again—two seemingly simple everyday activities that give him joy but were robbed by his accident.

With the success of this trial, the device may hit the market soon. Because it’s non-invasive, it can easily be integrated into existing physical therapy sessions. The team is already looking for approval in the United States, with discussions with the European Union soon to follow.  For now, the price is unknown, although Courtine said the aim is to make it widely accessible.

To Reid, being able to use her left hand is an enormous change to her life. It’s “extraordinary,” she said. “It makes you hold your head up and look at the world differently.”

Image Credit: ONWARD Medical N.V.

Kategorie: Transhumanismus

Get Your Why before AI: Technology is The How, Not the Why or What

Singularity Weblog - 23 Květen, 2024 - 13:00
 Technology is the new religion, Silicon Valley – the new Promised Land, and entrepreneurs – the new prophets. They promise a future of abundance and immortality—a techno-heaven beyond our wildest dreams. And we are all believers. We often forget technology is the how, not the why or what. It is a means to an […]
Kategorie: Transhumanismus

Dyson Spheres: Astronomers Report Potential Candidates for Alien Megastructures—Here’s What to Make of It

Singularity HUB - 22 Květen, 2024 - 20:22

There are three ways to look for evidence of alien technological civilizations. One is to look out for deliberate attempts by them to communicate their existence, for example, through radio broadcasts. Another is to look for evidence of them visiting the solar system. And a third option is to look for signs of large-scale engineering projects in space.

A team of astronomers have taken the third approach by searching through recent astronomical survey data to identify seven candidates for alien megastructures, known as Dyson spheres, “deserving of further analysis.”

This is a detailed study looking for “oddballs” among stars—objects that might be alien megastructures. However, the authors are careful not to make any overblown claims. The seven objects, all located within 1,000 light-years of Earth, are “M-dwarfs”—a class of stars that are smaller and less bright than the sun.

Dyson spheres were first proposed by the physicist Freeman Dyson in 1960 as a way for an advanced civilization to harness a star’s power. Consisting of floating power collectors, factories, and habitats, they’d take up more and more space until they eventually surrounded almost the entire star like a sphere.

What Dyson realized is that these megastructures would have an observable signature. Dyson’s signature (which the team searched for in the recent study) is a significant excess of infrared radiation. That’s because megastructures would absorb visible light given off by the star, but they wouldn’t be able to harness it all. Instead, they’d have to “dump” excess energy as infrared light with a much longer wavelength.

Unfortunately, such light can also be a signature of a lot of other things, such as a disc of gas and dust or discs of comets and other debris. But the seven promising candidates aren’t obviously due to a disc, as they weren’t good fits to disc models.

It is worth noting there is another signature of a Dyson sphere: that visible light from the star dips as the megastructure passes in front of it. Such a signature has been found before. There was a lot of excitement about Tabby’s Star, or KIC 8462852, which showed many really unusual dips in its light that could be due to an alien megastructure.

Tabby’s Star in infrared (left) and ultraviolet (right). Image Credit: Infrared: IPAC/NASA / Ultraviolet: STScI /NASA via Wikimedia Commons

It almost certainly isn’t an alien megastructure. A variety of natural explanations have been proposed, such as clouds of comets passing through a dust cloud. But it is an odd observation. An obvious follow up on the seven candidates would be to look for this signature as well.

The Case Against Dyson Spheres

Dyson spheres may well not even exist, however. I think they are unlikely to be there. That’s not to say they couldn’t exist, rather that any civilization capable of building them would probably not need to (unless it was some mega art project).

Dyson’s reasoning for considering such megastructures assumed that advanced civilizations would have vast power requirements. Around the same time, astronomer Nikolai Kardashev proposed a scale on which to rate the advancement of civilizations, which was based almost entirely on their power consumption.

In the 1960s, this sort of made sense. Looking back over history, humanity had just kept exponentially increasing its power use as technology advanced and the number of people increased, so they just extrapolated this ever-expanding need into the future.

However, our global energy use has started to grow much more slowly over the past 50 years, and especially over the last decade. What’s more, Dyson and Kardashev never specified what these vast levels of power would be used for, they just (fairly reasonably) assumed they’d be needed to do whatever it is that advanced alien civilizations do.

But as we now look ahead to future technologies, we see efficiency, miniaturization, and nanotechnologies promise vastly lower power use (the performance per watt of pretty much all technologies is constantly improving).

A quick calculation reveals that, if we wanted to collect 10 percent of the sun’s energy at the distance the Earth is from the sun, we’d need a surface area equal to 1 billion Earths. And if we had a super-advanced technology that could make the megastructure only 10 kilometers thick, that’d mean we’d need about a million Earths worth of material to build them from.

A significant problem is that our solar system only contains about 100 Earths worth of solid material, so our advanced alien civilization would need to dismantle all the planets in 10,000 planetary systems and transport it to the star to build their Dyson sphere. To do it with the material available in a single system, each part of the megastructure could only be one meter thick.

This is assuming they use all the elements available in a planetary system. If they needed, say, lots of carbon to make their structures, then we’re looking at dismantling millions of planetary systems to get hold of it. Now, I’m not saying a super-advanced alien civilization couldn’t do this, but it is one hell of a job.

I’d also strongly suspect that by the time a civilization got to the point of having the ability to build a Dyson sphere, they’d have a better way of getting the power than using a star, if they really needed it (I have no idea how, but they are a super-advanced civilization).

Maybe I’m wrong, but it can’t hurt to look.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Kevin Gill / Flickr

Kategorie: Transhumanismus

Can ChatGPT Mimic Theory of Mind? Psychology Is Probing AI’s Inner Workings

Singularity HUB - 21 Květen, 2024 - 23:26

If you’ve ever vented to ChatGPT about troubles in life, the responses can sound empathetic. The chatbot delivers affirming support, and—when prompted—even gives advice like a best friend.

Unlike older chatbots, the seemingly “empathic” nature of the latest AI models has already galvanized the psychotherapy community, with many wondering if  they can assist therapy.

The ability to infer other people’s mental states is a core aspect of everyday interaction. Called “theory of mind,” it lets us guess what’s going on in someone else’s mind, often by interpreting speech. Are they being sarcastic? Are they lying? Are they implying something that’s not overtly said?

“People care about what other people think and expend a lot of effort thinking about what is going on in other minds,” wrote Dr. Cristina Becchio and colleagues at the University Medical Center Hanburg-Eppendorf in a new study in Nature Human Behavior.”

In the study, the scientists asked if ChatGPT and other similar chatbots—which are based on machine learning algorithms called large language models—can also guess other people’s mindsets. Using a series of psychology tests tailored for certain aspects of theory of mind, they pitted two families of large language models, including OpenAI’s GPT series and Meta’s LLaMA 2, against over 1,900 human participants.

GPT-4, the algorithm behind ChatGPT, performed at, or even above, human levels in some tasks, such as identifying irony. Meanwhile, LLaMA 2 beat both humans and GPT at detecting faux pas—when someone says something they’re not meant to say but don’t realize it.

To be clear, the results don’t confirm LLMs have theory of mind. Rather, they show these algorithms can mimic certain aspects of this core concept that “defines us as humans,” wrote the authors.

What’s Not Said

By roughly four years old, children already know that people don’t always think alike. We have different beliefs, intentions, and needs. By placing themselves into other people’s shoes, kids can begin to understand other perspectives and gain empathy.

First introduced in 1978, theory of mind is a lubricant for social interactions. For example, if you’re standing near a closed window in a stuffy room, and someone nearby says, “It’s a bit hot in here,” you have to think about their perspective to intuit they’re politely asking you to open the window.

When the ability breaks down—for example, in autism—it becomes difficult to grasp other people’s emotions, desires, intentions, and to pick up deception. And we’ve all experienced when texts or emails lead to misunderstandings when a recipient misinterprets the sender’s meaning.

So, what about the AI models behind chatbots?

Man Versus Machine

Back in 2018, Dr. Alan Winfield, a professor in the ethics of robotics at the University of West England, championed the idea that theory of mind could let AI “understand” people and other robots’ intentions. At the time, he proposed giving an algorithm a programmed internal model of itself, with common sense about social interactions built in rather than learned.

Large language models take a completely different approach, ingesting massive datasets to generate human-like responses that feel empathetic. But do they exhibit signs of theory of mind?

Over the years, psychologists have developed a battery of tests to study how we gain the ability to model another’s mindset. The new study pitted two versions of OpenAI’s GPT models (GPT-4 and GPT-3.5) and Meta’s LLaMA-2-Chat against 1,907 healthy human participants. Based solely on text descriptions of social scenarios and using comprehensive tests spanning different theories of theory of mind abilities, they had to gauge the fictional person’s “mindset.”

Each test was already well-established for measuring theory of mind in humans in psychology.

The first, called “false belief,” is often used to test toddlers as they gain a sense of self and recognition of others. As an example, you listen to a story: Lucy and Mia are in the kitchen with a carton of orange juice in the cupboard. When Lucy leaves, Mia puts the juice in the fridge. Where will Lucy look for the juice when she comes back?

Both humans and AI guessed nearly perfectly that the person who’d left the room when the juice was moved would look for it where they last remembered seeing it. But slight changes tripped the AI up. When changing the scenario—for example, the juice was transported between two transparent containers—GPT models struggled to guess the answer. (Though, for the record, humans weren’t perfect on this either in the study.)

A more advanced test is “strange stories,” which relies on multiple levels of reasoning to test for advanced mental capabilities, such as misdirection, manipulation, and lying. For example, both human volunteers and AI models were told the story of Simon, who often lies. His brother Jim knows this and one day found his Ping-Pong paddle missing. He confronts Simon and asks if it’s under the cupboard or his bed. Simon says it’s under the bed. The test asks: Why would Jim look in the cupboard instead?

Out of all AI models, GPT-4 had the most success, reasoning that “the big liar” must be lying, and so it’s better to choose the cupboard. Its performance even trumped human volunteers.

Then came the “faux pas” study. In prior research, GPT models struggled to decipher these social situations. During testing, one example depicted a person shopping for new curtains, and while putting them up, a friend casually said, “Oh, those curtains are horrible, I hope you’re going to get some new ones.” Both humans and AI models were presented with multiple similar cringe-worthy scenarios and asked if the witnessed response was appropriate. “The correct answer is always no,” wrote the team.

GPT-4 correctly identified that the comment could be hurtful, but when asked whether the friend knew about the context—that the curtains were new—it struggled with a correct answer. This could be because the AI couldn’t infer the mental state of the person, and that recognizing a faux pas in this test relies on context and social norms not directly explained in the prompt, explained the authors. In contrast, LLaMA-2-Chat outperformed humans, achieving nearly 100 percent accuracy except for one run. It’s unclear why it has such as an advantage.

Under the Bridge

Much of communication isn’t what’s said, but what’s implied.

Irony is maybe one of the hardest concepts to translate between languages. When tested with an adapted psychological test for autism, GPT-4 surprisingly outperformed human participants in recognizing ironic statements—of course, through text only, without the usual accompanying eye-roll.

The AI also outperformed humans on a hinting task—basically, understanding an implied message. Derived from a test for assessing schizophrenia, it measures reasoning that relies on both memory and cognitive ability to weave and assess a coherent narrative. Both participants and AI models were given 10 written short skits, each depicting an everyday social interaction. The stories ended with a hint of how best to respond with open-ended answers. Over 10 stories, GPT-4 won against humans.

For the authors, the results don’t mean LLMs already have theory of mind. Each AI struggled with some aspects. Rather, they think the work highlights the importance of using multiple psychology and neuroscience tests—rather than relying on any one—to probe the opaque inner workings of machine minds. Psychology tools could help us better understand how LLMs “think”—and in turn, help us build safer, more accurate, and more trustworthy AI.

There’s some promise that “artificial theory of mind may not be too distant an idea,” wrote the authors.

Image Credit: Abishek / Unsplash

Kategorie: Transhumanismus

Scientists Are Working Towards a Unified Theory of Consciousness

Singularity HUB - 20 Květen, 2024 - 19:49

The origin of consciousness has teased the minds of philosophers and scientists for centuries. In the last decade, neuroscientists have begun to piece together its neural underpinnings—that is, how the brain, through its intricate connections, transforms electrical signaling between neurons into consciousness.

Yet the field is fragmented, an international team of neuroscientists recently wrote in a new paper in Neuron. Many theories of consciousness contradict each other, with different ideas about where and how consciousness emerges in the brain.

Some theories are even duking it out in a mano-a-mano test by imaging the brains of volunteers as they perform different tasks in clinical test centers across the globe.

But unlocking the neural basis of consciousness doesn’t have to be confrontational. Rather, theories can be integrated, wrote the authors, who were part of the Human Brain Project—a massive European endeavor to map and understand the brain—and specialize in decoding brain signals related to consciousness.

Not all authors agree on the specific brain mechanisms that allow us to perceive the outer world and construct an inner world of “self.” But by collaborating, they merged their ideas, showing that different theories aren’t necessarily mutually incompatible—in fact, they could be consolidated into a general framework of consciousness and even inspire new ideas that help unravel one of the brain’s greatest mysteries.

If successful, the joint mission could extend beyond our own noggins. Brain organoids, or “mini-brains,” that roughly mimic early human development are becoming increasingly sophisticated, spurring ethical concerns about their potential for developing self-awareness (to be clear, there aren’t any signs). Meanwhile, similar questions have been raised about AI. A general theory of consciousness, based on the human mind, could potentially help us evaluate these artificial constructs.

“Is it realistic to reconcile theories, or even aspire to a unified theory of consciousness?” the authors asked. “We take the standpoint that the existence of multiple theories is a sign of healthiness in this nascent field…such that multiple theories can simultaneously contribute to our understanding.”

Lost in Translation

I’m conscious. You are too. We see, smell, hear, and feel. We have an internal world that tells us what we’re experiencing. But the lines get blurry for people in different stages of coma or for those locked-in—they can still perceive their surroundings but can’t physically respond. We lose consciousness in sleep every night and during anesthesia. Yet, somehow, we regain consciousness. How?

With extensive imaging of the brain, neuroscientists today agree that consciousness emerges from the brain’s wiring and activity. But multiple theories argue about how electrical signals in the brain produce rich and intimate experiences of our lives.

Part of the problem, wrote the authors, is that there isn’t a clear definition of “consciousness.” In this paper, they separated the term into two experiences: one outer, one inner. The outer experience, called phenomenal consciousness, is when we immediately realize what we’re experiencing—for example, seeing a total solar eclipse or the northern lights.

The inner experience is a bit like a “gut feeling” in that it helps to form expectations and types of memory, so that tapping into it lets us plan behaviors and actions.

Both are aspects of consciousnesses, but the difference is hardly delineated in previous work. It makes comparing theories difficult, wrote the authors, but that’s what they set out to do.

Meet the Contenders

Using their “two experience” framework, they examined five prominent consciousness theories.

The first, the global neuronal workspace theory, pictures the brain as a city of sorts. Each local brain region “hub” dynamically interacts with a “global workspace,” which integrates and broadcasts information to other hubs for further processing—allowing information to reach the consciousness level. In other words, we only perceive something when all pieces of sensory information—sight, hearing, touch, taste—are woven into a temporary neural sketchpad. According to this theory, the seat of consciousness is in the frontal parts of the brain.

The second, integrated information theory, takes a more globalist view. The idea is that consciousness stems from a series of cause-effect reactions from the brain’s networks. With the right neural architecture, connections, and network complexity, consciousness naturally emerges. The theory suggests the back of the brain sparks consciousness.

Then there’s dendritic integration theory, the coolest new kid in town. Unlike previous ideas, this theory waved the front or back of the brain goodbye and instead zoomed in on single neurons in the cortex, the outermost part of the brain and a hub for higher cognitive functions such as reasoning and planning.

The cortex has extensive connections to other parts of the brain—for example, those that encode memories and emotions. One type of neuron, deep inside the cortex, especially stands out. Physically, these neurons resemble trees with extensive “roots” and “branches.” The roots connect to other parts of the brain, whereas the upper branches help calculate errors in the neuron’s computing. In turn, these upper branches generate an error signal that corrects mistakes through multiple rounds of learning.

The two compartments, while physically connected, go about their own business—turning a single neuron into multiple computers. Here’s the crux: There’s a theoretical “gate” between the upper and lower neural “offices” for each neuron. During consciousness, the gate opens, allowing information to flow between the cortex and other brain regions. In dreamless sleep and other unconscious states, the gate closes.

Like a light switch, this theory suggests that consciousness is supported by flicking individual neuron gates on or off on a grand scale.

The last two theories propose that recurrent processing in the brain—that is, it learns from previous experiences—is essential for consciousness. Instead of “experiencing” the world, the brain builds an internal simulation that constantly predicts the “here and now” to control what we perceive.

A Unified Theory?

All the theories have extensive experiments to back up their claims. So, who’s right? To the authors, the key is to consider consciousness not as a singular concept, but as a “ladder” of sorts. The brain functions at multiple levels: cells, local networks, brain regions, and finally, the whole brain.

When examining theories of consciousness, it also makes sense to delineate between different levels. For example, the dendritic integration theory—which considers neurons and their connections—is on the level of single cells and how they contribute to consciousness. It makes the theory “neutral,” in that it can easily fit into ideas at a larger scale—those that mostly rely on neural network connections or across larger brain regions.

Although it’s seemingly difficult to reconcile various ideas about consciousness, two principles tie them together, wrote the team. One is that consciousness requires feedback, within local neural circuits and throughout the brain. The other is integration, in that any feedback signals need to be readily incorporated back into neural circuits, so they can change their outputs. Finally, all authors agree that local, short connections are vital but not enough. Long distance connections from the cortex to deeper brain areas are required for consciousness.

So, is an integrated theory of consciousness possible? The authors are optimistic. By defining multiple aspects of consciousness—immediate responses versus internal thoughts—it’ll be clearer how to explore and compare results from different experiments. For now, the global neuronal workspace theory mostly focuses on the “inner experience” that leads to consciousness, whereas others try to tackle the “outer experience”—what we immediately experience.

For the theories to merge, the latter groups will have to explain how consciousness is used for attention and planning, which are hallmarks for immediate responses. But fundamentally, wrote the authors, they are all based on different aspects of neuronal connections near and far. With more empirical experiments, and as increasingly more sophisticated brain atlases come online, they’ll move the field forward.

Hopefully, the authors write, “an integrated theory of consciousness…may come within reach within the next years or decades.”

Image Credit: SIMON LEE / Unsplash

Kategorie: Transhumanismus

Make Music A Full Body Experience With A “Vibro-Tactile” Suit

Futurism - Enhanced Humans - 27 Září, 2018 - 17:09

Tired: Listening to music.
Wired: Feeling the music.

A mind-bending new suit straps onto your torso, ankles and wrists, then uses actuators to translate audio into vivid vibration. The result: a new way for everyone to experience music, according to its creators. That’s especially exciting for people who have trouble hearing.


The Music: Not Impossible suit was created by design firm Not Impossible Labs and electronics manufacturing company Avnet. The suit can create sensations to go with pre-recorded music, or a “Vibrotactile DJ” can adjust the sensations in real time during a live music event.”

Billboard writer Andy Hermann tried the suit out, and it sounds like a trip.

“Sure enough, a pulse timed to a kickdrum throbs into my ankles and up through my legs,” he wrote. “Gradually, [the DJ] brings in other elements: the tap of a woodblock in my wrists, a bass line massaging my lower back, a harp tickling a melody across my chest.”


To show the suit off, Not Impossible and Avnet organized a performance this past weekend by the band Greta Van Fleet at the Life is Beautiful Festival in Las Vegas. The company allowed attendees to don the suits. Mandy Harvey, a deaf musician who stole the show on America’s Got Talent last year, talked about what the performance meant to her in a video Avnet posted to Facebook.

“It was an unbelievable experience to have an entire audience group who are all experiencing the same thing at the same time,” she said. “For being a deaf person, showing up at a concert, that never happens. You’re always excluded.”

READ MORE: Not Impossible Labs, Zappos Hope to Make Concerts More Accessible for the Deaf — and Cooler for Everyone [Billboard]

More on accessible design: New Tech Allows Deaf People To Sense Sounds

The post Make Music A Full Body Experience With A “Vibro-Tactile” Suit appeared first on Futurism.

Kategorie: Transhumanismus

“Synthetic Skin” Could Give Prosthesis Users a Superhuman Sense of Touch

Futurism - Enhanced Humans - 20 Září, 2018 - 21:37

Today’s prosthetics can give people with missing limbs the ability to do almost anything — run marathons, climb mountains, you name it. But when it comes to letting those people feel what they could with a natural limb, the devices, however mechanically sophisticated, invariably fall short.

Now researchers have created a “synthetic skin” with a sense of touch that not only matches the sensitivity of natural skin, but in some cases even exceeds it. Now the only challenge is getting that information back into the wearer’s nervous system.


When something presses against your skin, your nerves receive and transmit that pressure to the brain in the form of electrical signals.

To mimic that biological process, the researchers suspended a flexible polymer, dusted with magnetic particles, over a magnetic sensor. The effect is like a drum: Applying even the tiniest amount of pressure to the membrane causes the magnetic particles to move closer to the sensors, and they transmit this movement electronically.

The research, which could open the door to super-sensitive prosthetics, was published Wednesday in the journal Science Robotics.


Tests shows that the skin can sense extremely subtle pressure, such as a blowing breeze, dripping water, or crawling ants. In some cases, the synthetic skin responded to pressures so gentle that natural human skin wouldn’t be able to detect them.

While the sensing ability of this synthetic skin is remarkable, the team’s research doesn’t address how to transmit the signals to the human brain. Other scientists are working on that, though, so eventually this synthetic skin could give prosthetic wearers the ability to feel forces even their biological-limbed friends can’t detect.

READ MORE: A Skin-Inspired Tactile Sensor for Smart Prosthetics [Science Robotics]

More on synthetic skin: Electronic Skin Lets Amputees Feel Pain Through Their Prosthetics

The post “Synthetic Skin” Could Give Prosthesis Users a Superhuman Sense of Touch appeared first on Futurism.

Kategorie: Transhumanismus

People Are Zapping Their Brains to Boost Creativity. Experts Have Concerns.

Futurism - Enhanced Humans - 19 Září, 2018 - 21:56

There’s a gadget that some say can help alleviate depression and enhance creativity. All you have to do is place a pair of electrodes on your scalp and the device will deliver electrical current to your brain. It’s readily available on Amazon or you can even make your own.

But in a new paper published this week in the Creativity Research Journal, psychologists at Georgetown University warned that the practice is spreading before we have a good understanding of its health effects, especially since consumers are already buying and building unregulated devices to shock them. They also cautioned that the technique, which scientists call transcranial electrical stimulation (tES), could have adverse effects on the brains of young people.

“There are multiple potential concerns with DIY-ers self-administering electric current to their brains, but this use of tES may be inevitable,” said co-author Adam Green in a press release. “And, certainly, anytime there is risk of harm with a technology, the scariest risks are those associated with kids and the developing brain”


Yes, there’s evidence that tES can help patients with depression, anxiety, Parkinson’s disease, and other serious conditions, the Georgetown researchers acknowledge.

But that’s only when it’s administered by a trained health care provider. When administering tES at home, people might ignore safety directions, they wrote, or their home-brewed devices could deliver unsafe amounts of current. And because it’s not yet clear what effects of tES might be on the still-developing brains of young people, the psychologists advise teachers and parents to resist the temptation to use the devices to encourage creativity among children.

The takeaway: tES is likely here to stay, and it may provide real benefits. But for everyone’s sake, consumer-oriented tES devices should be regulated to protect users.

READ MORE: Use of electrical brain stimulation to foster creativity has sweeping implications [Eurekalert]

More on transcranial electrical stimulation: DARPA’s New Brain Device Increases Learning Speed by 40%

The post People Are Zapping Their Brains to Boost Creativity. Experts Have Concerns. appeared first on Futurism.

Kategorie: Transhumanismus

Military Pilots Can Control Three Jets at Once via a Neural Implant

Futurism - Enhanced Humans - 19 Září, 2018 - 16:25

The military is making it easier than ever for soldiers to distance themselves from the consequences of war. When drone warfare emerged, pilots could, for the first time, sit in an office in the U.S. and drop bombs in the Middle East.

Now, one pilot can do it all, just using their mind — no hands required.

Earlier this month, DARPA, the military’s research division, unveiled a project that it had been working on since 2015: technology that grants one person the ability to pilot multiple planes and drones with their mind.

“As of today, signals from the brain can be used to command and control … not just one aircraft but three simultaneous types of aircraft,” Justin Sanchez, director of DARPA’s Biological Technologies Office, said, according to Defense One.


Sanchez may have unveiled this research effort at a “Trajectory of Neurotechnology” session at DARPA’s 60th anniversary event, but his team has been making steady progress for years. Back in 2016, a volunteer equipped with a brain-computer interface (BCI) was able to pilot an aircraft in a flight simulator while keeping two other planes in formation — all using just his thoughts, a spokesperson from DARPA’s Biological Technologies Office told Futurism.

In 2017, Copeland was able to steer a plane through another simulation, this time receiving haptic feedback — if the plane needed to be steered in a certain direction, Copeland’s neural implant would create a tingling sensation in his hands.


There’s a catch. The DARPA spokesperson told Futurism that because this BCI makes use of electrodes implanted in and on the brain’s sensory and motor cortices, experimentation has been limited to volunteers with varying degrees of paralysis. That is: the people steering these simulated planes already had brain electrodes, or at least already had reason to undergo surgery.

To try and figure out how to make this technology more accessible and not require surgical placement of a metal probe into people’s brains, DARPA recently launched the NExt-Generation Nonsurgical Neurotechnology (N3) program. The plan is to make a device with similar capabilities, but it’ll look more like an EEG cap that the pilot can take off once a mission is done.

“The envisioned N3 system would be a tool that the user could wield for the duration of a task or mission, then put aside,” said Al Emondi, head of N3, according to the spokesperson. “I don’t like comparisons to a joystick or keyboard because they don’t reflect the full potential of N3 technology, but they’re useful for conveying the basic notion of an interface with computers.”

READ MORE: It’s Now Possible To Telepathically Communicate with a Drone Swarm [Defense One]

More on DARPA research: DARPA Is Funding Research Into AI That Can Explain What It’s “Thinking”

The post Military Pilots Can Control Three Jets at Once via a Neural Implant appeared first on Futurism.

Kategorie: Transhumanismus

Lab-Grown Bladders Can Save People From a Lifetime of Dialysis

Futurism - Enhanced Humans - 12 Září, 2018 - 22:54

Today, about 10 people on Earth have bladders they weren’t born with. No, they didn’t receive bladder transplants — doctors grew these folks new bladders using the recipients’ own cells.

On Tuesday, the BBC published a report on the still-nascent procedure of transplanting lab-grown bladders. In it, the publication talks to Luke Massella, who underwent the procedure more than a decade ago. Massella was born with spina bifida, which carries with it a risk of damage to the bladder and urinary tract. Now, he lives a normal life, he told the BBC.

“I was kind of facing the possibility I might have to do dialysis [blood purification via machine] for the rest of my life,” he said. “I wouldn’t be able to play sports, and have the normal kid life with my brother.”

All that changed after Anthony Atala, a surgeon at Boston Children’s Hospital, decided he was going to grow a new bladder for Massella.


To do that, Atala first removed a small piece of Massella’s own bladder. He then removed cells from this portion of bladder and multiplied them in a petri dish. Once he had enough cells, he coated a scaffold with the cells and placed the whole thing in a temperature controlled, high oxygen environment. After a few weeks, the lab-created bladder was ready for transplantation into Massella.

“So it was pretty much like getting a bladder transplant, but from my own cells, so you don’t have to deal with rejection,” said Massella.

The number of people with lab-grown bladders might still be low enough to count on your fingers, but researchers are making huge advances in growing everything from organs to skin in the lab. Eventually, we might reach a point when we can replace any body part we need to with a perfect biological match that we built ourselves.

READ MORE: “A New Bladder Made From My Cells Gave Me My Life Back” [BBC]

More on growing organs: The FDA Wants to Expedite Approval of Regenerative Organ Therapies

The post Lab-Grown Bladders Can Save People From a Lifetime of Dialysis appeared first on Futurism.

Kategorie: Transhumanismus
Syndikovat obsah