Security-Portal.cz je internetový portál zaměřený na počítačovou bezpečnost, hacking, anonymitu, počítačové sítě, programování, šifrování, exploity, Linux a BSD systémy. Provozuje spoustu zajímavých služeb a podporuje příznivce v zajímavých projektech.

Kategorie

How to fit all of Shakespeare in one tweet (and why not to do it!)

Sophos Naked Security - 12 Listopad, 2018 - 18:25
A security researcher squoze 1,299,999 words into a single tweet, thanks to image metadata that Twitter doesn't remove.

Malware-Laced App Lurked on Google Play For a Year

Threatpost - 12 Listopad, 2018 - 18:13
Google Play’s policy prohibits apps or SDKs that download executable code, such as dex files or native code, from a source other than Google Play
Kategorie: Hacking & Security

New Boom in Facial Recognition Tech Prompts Privacy Alarms

Threatpost - 12 Listopad, 2018 - 16:52
Tech advances are accelerating the use of facial recognition as a reliable and ubiquitous mass surveillance tool, privacy advocates warn.
Kategorie: Hacking & Security

Headmaster fired over cryptocoin mining on the school’s dime

Sophos Naked Security - 12 Listopad, 2018 - 14:24
O, that constant whirring noise? And the sky-high electricity bill? Why, it's those darn air conditioners and heaters!

Top 5 Factors That Increase Cyber Security Salary The Most

The Hacker News - 12 Listopad, 2018 - 14:12
Our partner Springboard, which provides online courses to help you advance your cybersecurity career with personalized mentorship from industry experts, recently researched current cybersecurity salaries and future earning potential in order to trace a path to how much money you can make. Here's what they found were the most important factors for making sure you earn as much as possible: 1
Kategorie: Hacking & Security

New APIs Suggest WPA3 Wi-Fi Security Support Coming Soon to Windows 10

The Hacker News - 12 Listopad, 2018 - 13:55
Windows 10 users don't have to wait much longer for the support of latest WPA3 Wi-Fi security standard, a new blog post from Microsoft apparently revealed. The third version of Wi-Fi Protected Access, in-short WPA3, is the next generation of the wireless security protocol that has been designed to make it harder for attackers to hack WiFi password. WPA3 was officially launched earlier this
Kategorie: Hacking & Security

Botnet pwns 100,000 routers using ancient security flaw

Sophos Naked Security - 12 Listopad, 2018 - 13:53
Researchers have stumbled on another large botnet that’s been hijacking home routers while nobody was paying attention.

Terrorists told to hijack social media accounts to spread propaganda

Sophos Naked Security - 12 Listopad, 2018 - 13:32
Facebook has removed 14 million pieces of content dubbed likely to come from terrorists, as determined by new machine learning technology

Microsoft mistake leaves Windows 10 users fuming

Sophos Naked Security - 12 Listopad, 2018 - 12:40
Microsoft Windows 10 users were livid late last week after Microsoft mistakenly told them that their licenses were invalid.

Monday review – the hot 21 stories of the week

Sophos Naked Security - 12 Listopad, 2018 - 11:09
From the 'Martinelli' WhatsApp hoax to Facebook wanting to give your name to the weirdo next to you, and everything in between. Catch up with this and everything we wrote in the last seven days - it's weekly roundup time!

Post-WannaCry: Only 3% of companies are prepared for new types of cyberattacks

LinuxSecurity.com - 12 Listopad, 2018 - 11:05
LinuxSecurity.com: One year ago, my phone lit up with the first text alert about the WannaCry ransomware attack. From the onset, it was clear this attack was major and that it was moving across the world at an unprecedented speed. Over four days, WannaCry inflicted billions of dollars of damages and infected more than 300,000 machines.
Kategorie: Hacking & Security

IoT security and Linux: Why IncludeOS thinks it has the edge

LinuxSecurity.com - 12 Listopad, 2018 - 11:01
LinuxSecurity.com: Security is a big worry for the Internet of Things. We've already seen countless incidents where smart internet-connected devices are taken over by an attacker and put to unintended use.
Kategorie: Hacking & Security

IT threat evolution Q3 2018. Statistics

Kaspersky Securelist - 12 Listopad, 2018 - 11:00

These statistics are based on detection verdicts of Kaspersky Lab products received from users who consented to provide statistical data.

Q3 figures

According to Kaspersky Security Network:

  • Kaspersky Lab solutions blocked 947,027,517 attacks launched from online resources located in 203 countries.
  • 246,695,333 unique URLs were recognized as malicious by Web Anti-Virus components.
  • Attempted infections by malware designed to steal money via online access to bank accounts were logged on the computers of 305,315 users.
  • Ransomware attacks were registered on the computers of 259,867 unique users.
  • Our File Anti-Virus logged 239,177,356 unique malicious and potentially unwanted objects.
  • Kaspersky Lab products for mobile devices detected:
    • 1,305,015 malicious installation packages
    • 55,101 installation packages for mobile banking Trojans
    • 13,075 installation packages for mobile ransomware Trojans.
Mobile threats Q3 events

Perhaps the biggest news of the reporting period was the Trojan-Banker.AndroidOS.Asacub epidemic. It peaked in September when more than 250,000 unique users were attacked – and that only includes statistics for those with Kaspersky Lab’s mobile products installed on their devices.

Number of users attacked by the mobile banker Asacub in 2017 and 2018

The scale of the attack involving Asacub by far surpasses the largest attacks we have previously observed while monitoring mobile threats. The Trojan’s versions have sequential version numbers, suggesting the attacks were launched by just one threat actor. It’s impossible to count the total number of affected users, but it would need to be in the tens of thousands to make such a massive malicious campaign profitable.

Mobile threat statistics

In Q3 2018, Kaspersky Lab detected 1,305,015 malicious installation packages, which is 439,229 more packages than in the previous quarter.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Number of detected malicious installation packages, Q3 2017 – Q3 2018 (download)

Distribution of detected mobile apps by type

Among all the threats detected in Q3 2018, the lion’s share belonged to potentially unwanted RiskTool apps (52.05%); compared to the previous quarter, their share decreased by 3.3 percentage points (p.p.). Members of the RiskTool.AndroidOS.SMSreg family contributed most to this.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Distribution of newly detected mobile apps by type, Q2 – Q3 2018 (download)

Second place was occupied by Trojan-Dropper threats (22.57%), whose share increased by 9 p.p. Most files of this type belonged to the Trojan-Dropper.AndroidOS.Piom, Trojan-Dropper.AndroidOS.Wapnor and Trojan-Dropper.AndroidOS.Hqwar families.

The share of advertising apps continued to decrease and accounted for 6.44% of all detected threats (compared to 8.91% in Q2 2018).

The statistics show that the number of mobile financial threats has been rising throughout 2018, with the proportion of mobile banker Trojans increasing from 1.5% in Q1, to 4.38% of all detected threats in Q3.

TOP 20 mobile malware

Verdicts* %** 1 DangerousObject.Multi.Generic 55.85 2 Trojan.AndroidOS.Boogr.gsh 11.39 3 Trojan-Banker.AndroidOS.Asacub.a 5.28 4 Trojan-Banker.AndroidOS.Asacub.snt 5.10 5 Trojan.AndroidOS.Piom.toe 3.23 6 Trojan.AndroidOS.Dvmap.a 3.12 7 Trojan.AndroidOS.Triada.dl 3.09 8 Trojan-Dropper.AndroidOS.Tiny.d 2.88 9 Trojan-Dropper.AndroidOS.Lezok.p 2.78 10 Trojan.AndroidOS.Agent.rt 2,74 11 Trojan-Banker.AndroidOS.Asacub.ci 2.62 12 Trojan-Banker.AndroidOS.Asacub.cg 2.51 13 Trojan-Banker.AndroidOS.Asacub.ce 2.29 14 Trojan-Dropper.AndroidOS.Agent.ii 1,77 15 Trojan-Dropper.AndroidOS.Hqwar.bb 1.75 16 Trojan.AndroidOS.Agent.pac 1.61 17 Trojan-Dropper.AndroidOS.Hqwar.ba 1.59 18 Exploit.AndroidOS.Lotoor.be 1.55 19 Trojan.AndroidOS.Piom.uwp 1.48 20 Trojan.AndroidOS.Piom.udo 1.36

* This malware rating does not include potentially dangerous or unwanted programs such as RiskTool or adware.
** Unique users attacked by the given malware as a percentage of all users of Kaspersky Lab’s mobile antivirus that were attacked.

First place in our TOP 20 once again went to DangerousObject.Multi.Generic (55.85%), the verdict we use for malware that’s detected using cloud technologies. Cloud technologies work when antivirus databases do not yet contain the data to detect a malicious program but the company’s cloud antivirus database already includes information about the object. This is basically how the very latest malicious programs are detected.

In second place was Trojan.AndroidOS.Boogr.gsh (11.39%). This verdict is given to files that our system recognizes as malicious based on machine learning..

Third and fourth places went to representatives of the Asacub mobile banker family – Trojan-Banker.AndroidOS.Asacub.a (5.28%) and Trojan-Banker.AndroidOS.Asacub.snt (5.10%).

Geography of mobile threats

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Map of attempted infections using mobile malware, Q3 2018 (download)

TOP 10 countries by share of users attacked by mobile malware:

Country* %** 1 Bangladesh 35.91 2 Nigeria 28.54 3 Iran 28.07 4 Tanzania 28.03 5 China 25.61 6 India 25.25 7 Pakistan 25.08 8 Indonesia 25.02 9 Philippines 23.07 10 Algeria 22.88

* Countries with relatively few users of Kaspersky Lab’s mobile antivirus (under 10,000) are excluded.
** Unique users attacked in the country as a percentage of all users of Kaspersky Lab’s mobile antivirus in the country.

In Q3 2018, Bangladesh (35.91%) retained first place in terms of the share of mobile users attacked. Nigeria (28.54%) came second. Third and fourth places were claimed by Iran (28.07%) and Tanzania (28.03%) respectively.

Mobile banking Trojans

During the reporting period, we detected 55,101 installation packages for mobile banking Trojans, which is nearly 6,000 fewer than in Q2 2018.

The largest contribution was made by Trojans belonging to the family Trojan-Banker.AndroidOS.Hqwar.jck – this verdict was given to 35% of all detected banking Trojans. Trojan-Banker.AndroidOS.Asacub came second, accounting for 29%.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Number of installation packages for mobile banking Trojans detected by Kaspersky Lab, Q3 2017 – Q3 2018 (download)

Verdicts %* 1 Trojan-Banker.AndroidOS.Asacub.a 33.27 2 Trojan-Banker.AndroidOS.Asacub.snt 32.16 3 Trojan-Banker.AndroidOS.Asacub.ci 16.51 4 Trojan-Banker.AndroidOS.Asacub.cg 15.84 5 Trojan-Banker.AndroidOS.Asacub.ce 14.46 6 Trojan-Banker.AndroidOS.Asacub.cd 6.66 7 Trojan-Banker.AndroidOS.Svpeng.q 3.25 8 Trojan-Banker.AndroidOS.Asacub.cf 2.07 9 Trojan-Banker.AndroidOS.Asacub.bz 1.68 10 Trojan-Banker.AndroidOS.Asacub.bw 1.68

* Unique users attacked by the given malware as a percentage of all users of Kaspersky Lab’s mobile antivirus that were attacked by banking threats.

In Q3 2018, the TOP 10 rating of banking threats was almost exclusively (nine places out of 10) occupied by various versions of Trojan-Banker.AndroidOS.Asacub.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Geography of mobile banking threats, Q3 2018 (download)

TOP 10 countries by share of users attacked by mobile banking Trojans:

Country* %** 1 Russia 2.18 2 South Africa 2.16 3 Malaysia 0.53 4 Ukraine 0.41 5 Australia 0.39 6 China 0.35 7 South Korea 0.33 8 Tajikistan 0.30 9 USA 0.27 10 Poland 0.25

* Countries where the number of users of Kaspersky Lab’s mobile antivirus is relatively small (under 10,000) are excluded.
** Unique users in the country attacked by mobile ransomware Trojans as a percentage of all users of Kaspersky Lab’s mobile antivirus in the country.

In Q3 2018, Russia ended up in first place in this TOP 10 because of the mass attacks involving the Asacub Trojan. The USA, the previous quarter’s leader, fell to ninth (0.27%) in Q3. Second and third place were occupied by South Africa (2.16%) and Malaysia (0.53%) respectively.

Mobile ransomware Trojans

In Q3 2018, we detected 13,075 installation packages for mobile ransomware Trojans, which is 1,044 fewer than in Q2.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Number of installation packages for mobile ransomware Trojans detected by Kaspersky Lab, Q3 2017 – Q3 2018 (download)

Verdicts %* 1 Trojan-Ransom.AndroidOS.Svpeng.ag 47.79 2 Trojan-Ransom.AndroidOS.Svpeng.ah 26.55 3 Trojan-Ransom.AndroidOS.Zebt.a 6.71 4 Trojan-Ransom.AndroidOS.Fusob.h 6.23 5 Trojan-Ransom.AndroidOS.Rkor.g 5.50 6 Trojan-Ransom.AndroidOS.Svpeng.snt 3.38 7 Trojan-Ransom.AndroidOS.Svpeng.ab 2.15 8 Trojan-Ransom.AndroidOS.Egat.d 1.94 9 Trojan-Ransom.AndroidOS.Small.as 1.43 10 Trojan-Ransom.AndroidOS.Small.cj 1.23

* Unique users attacked by the given malware as a percentage of all users of Kaspersky Lab’s mobile antivirus attacked by ransomware Trojans.

In Q3 2018, the most widespread mobile ransomware Trojans belonged to the Svpeng family – Trojan-Ransom.AndroidOS.Svpeng.ag (47.79%) and Trojan-Ransom.AndroidOS.Svpeng.ah (26.55%). Together, they accounted for three quarters of all mobile ransomware Trojan attacks. The once-popular families Zebt and Fusob were a distant third and fourth, represented by Trojan-Ransom.AndroidOS.Zebt.a (6.71%) and Trojan-Ransom.AndroidOS.Fusob.h (6.23%) respectively.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Geography of mobile ransomware Trojans, Q3 2018 (download)

TOP 10 countries by share of users attacked by mobile ransomware Trojans:

Country* %** 1 USA 1.73 2 Kazakhstan 0.36 3 China 0.14 4 Italy 0.12 5 Iran 0.11 6 Belgium 0.10 7 Switzerland 0.09 8 Poland 0.09 9 Mexico 0.09 10 Romania 0.08

* Countries where the number of users of Kaspersky Lab’s mobile antivirus is relatively small (under 10,000) are excluded.
** Unique users in the country attacked by mobile ransomware Trojans as a percentage of all users of Kaspersky Lab’s mobile antivirus in the country.

Just like in Q2, first place in the TOP 10 went to the United States (1.73%). Kazakhstan (0.6%) rose one place to second in Q3, while China (0.14%) rose from seventh to third.

Attacks on IoT devices

In this quarter’s report, we decided to only present the statistics for Telnet attacks, as this type of attack is used most frequently and employs the widest variety of malware types.

Telnet 99,4% SSH 0,6%

The popularity of attacked services according to the number of unique IP addresses from which attacks were launched, Q3 2018

Telnet attacks

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Geography of IP addresses of devices from which attacks were attempted on Kaspersky Lab honeypots, Q3 2018 (download)

TOP 10 countries hosting devices that were sources of attacks targeting Kaspersky Lab honeypots.

Country %* 1 China 27.15% 2 Brazil 10.57% 3 Russia 7.87% 4 Egypt 7.43% 5 USA 4.47% 6 South Korea 3.57% 7 India 2.59% 8 Taiwan 2.17% 9 Turkey 1.82% 10 Italy 1.75%

* Infected devices in each country as a percentage of the global number of IoT devices that attack via Telnet.

In Q3, China (23.15%) became the leader in terms of the number of unique IP addresses directing attacks against Kaspersky Lab honeypots. Brazil (10.57%) came second, after leading the rating in Q2. Russia (7.87%) was third.

Successful Telnet attacks saw the threat actors download Downloader.Linux.NyaDrop.b (62.24%) most often. This piece of malware is remarkable in that it contains a shell code that downloads other malware from the same source computer that has just infected the victim IoT device. The shell code doesn’t require any utilities – it performs all the necessary actions within itself using system calls. In other words, NyaDrop is a kind of universal soldier, capable of performing its tasks irrespective of the environment it has been launched in.

It was the Trojans of the family Backdoor.Linux.Hajime that downloaded NyaDrop most frequently, because this is a very convenient self-propagation method for Hajime. The flow chart in this case is of particular interest:

  1. After successfully infecting a device, Hajime scans the network to find new victims.
  2. As soon as a suitable device is found, the lightweight NyaDrop (just 480 bytes) is downloaded to it.
  3. NyaDrop contacts the device that was the infection source and slowly downloads Hajime, which is much larger.

All these actions are only required because it’s quite a challenge to download files via Telnet, though it is possible to execute commands. For example, this is what creating a NyaDrop file looks like:

echo -ne "\x7f\x45\x4c\x46\x01\x01\x01\x00\x00

480 bytes can be sent this way, but sending 60 KB becomes problematic.

TOP 10 malware downloaded to infected IoT devices in successful Telnet attacks

Verdicts %* 1 Trojan-Downloader.Linux.NyaDrop.b 62.24% 2 Backdoor.Linux.Mirai.ba 16.31% 3 Backdoor.Linux.Mirai.b 12.01% 4 Trojan-Downloader.Shell.Agent.p 1.53% 5 Backdoor.Linux.Mirai.c 1.33% 6 Backdoor.Linux.Gafgyt.ay 1.15% 7 Backdoor.Linux.Mirai.au 0.83% 8 Backdoor.Linux.Gafgyt.bj 0.61% 9 Trojan-Downloader.Linux.Mirai.d 0.51% 10 Backdoor.Linux.Mirai.bj 0.37%

* Proportion of downloads of each specific malicious program to IoT devices in successful Telnet attacks as a percentage of all malware downloads in such attacks.

The rating did not differ much from the previous quarter: half the top 10 is occupied by different modifications of Mirai, which is the most widespread IoT malware program to date.

Financial threats Q3 events

The banking Trojan DanaBot that was detected in Q2 continued to develop rapidly in Q3. A new modification included not only an updated C&C/bot communication protocol but also an extended list of organizations targeted by the malware. Its prime targets in Q2 were located in Australia and Poland, but in Q3 organizations from Austria, Germany and Italy were also included.

To recap, DanaBot has a modular structure and is capable of loading extra modules to intercept traffic and steal passwords and crypto wallets. The Trojan spread via spam messages containing a malicious office document, which subsequently loaded the Trojan’s main body.

Financial threat statistics

In Q3 2018, Kaspersky Lab solutions blocked attempts to launch one or more malicious programs designed to steal money from bank accounts on the computers of 305,315 users.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Number of unique users attacked by financial malware, Q3 2018 (download)

Geography of attacks

To evaluate and compare the risk of being infected by banking Trojans and ATM/POS malware worldwide, we calculated the share of users of Kaspersky Lab products in each country that faced this threat during the reporting period out of all users of our products in that country.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Geography of banking malware attacks, Q3 2018 (download)

TOP 10 countries by percentage of attacked users

Country* %** 1 Germany 3.0 2 South Korea 2.8 3 Greece 2.3 4 Malaysia 2.1 5 Serbia 2.0 6 United Arab Emirates 1.9 7 Portugal 1.9 8 Lithuania 1.9 9 Indonesia 1.8 10 Cambodia 1.8

* Countries with relatively few users of Kaspersky Lab’s mobile antivirus (under 10,000) are excluded.
** Unique users attacked by mobile banking Trojans in the country as a percentage of all users of Kaspersky Lab’s mobile antivirus in that country.

TOP 10 banking malware families

Name Verdicts %* 1 Zbot Trojan.Win32.Zbot 25.8 2 Nymaim Trojan.Win32.Nymaim 18.4 3 SpyEye Backdoor.Win32.SpyEye 18.1 4 RTM Trojan-Banker.Win32.RTM 9.2 5 Emotet Backdoor.Win32.Emotet 5.9 6 Neurevt Trojan.Win32.Neurevt 4.7 7 Tinba Trojan-Banker.Win32.Tinba 2.8 8 NeutrinoPOS Trojan-Banker.Win32.NeutrinoPOS 2.4 9 Gozi Trojan.Win32. Gozi 1.6 10 Trickster Trojan.Win32.Trickster 1.4

* Unique users attacked by the given malware as a percentage of all users that were attacked by banking threats.

In Q3 2018, there were three newcomers to this TOP 10: Trojan.Win32.Trickster (1.4%), Trojan-Banker.Win32.Tinba (2.8%) and Trojan-Banker.Win32.RTM (9.2%). The latter shot to fourth place thanks to a mass mailing campaign in mid-July that involved emails with malicious attachments and links.

Overall, the TOP 3 remained the same, though Trojan.Win32.Nymaim ceded some ground – from 27% in Q2 to 18.4% in Q3 – and fell to second.

Cryptoware programs Q3 events

In early July, Kaspersky Lab experts detected an unusual modification of the notorious Rakhni Trojan. What drew the analysts’ attention was that in some cases the downloader now delivers a miner instead of ransomware as was always the case with this malware family in the past.

August saw the detection of the rather unusual KeyPass ransomware. Its creators apparently decided to make provisions for all possible infection scenarios – via spam, with the help of exploit packs, and via manual brute-force attacks on the passwords of the remote access system, after which the Trojan is launched. The KeyPass Trojan can run in both hidden mode and GUI mode so the threat actor can configure encryption parameters.

Meanwhile, law enforcement agencies continue their systematic battle against ransomware. Following several years of investigations, two cybercriminals who distributed the CoinVault ransomware were found guilty in the Netherlands.

Statistics Number of new modifications

In Q3, the number of detected cryptoware modifications was significantly lower than in Q2 and close to that of Q1.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Number of new cryptoware modifications, Q4 2017 – Q3 2018 (download)

Number of users attacked by Trojan cryptors

In Q3 2018, Kaspersky Lab products protected 259,867 unique KSN users from Trojan cryptors. The total number of attacked users rose both against Q2 and on a month-on-month basis during Q3. In September, we observed a significant rise in the number of attempted infections, which appears to correlate with people returning from seasonal vacations.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Number of unique users attacked by Trojan cryptors, Q3 2018 (download)

Geography of attacks

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Geography of Trojan cryptors attacks, Q3 2018 (download)

TOP 10 countries attacked by Trojan cryptors

Country* %** 1 Bangladesh 5.80 2 Uzbekistan 3.77 3 Nepal 2.18 4 Pakistan 1.41 5 India 1.27 6 Indonesia 1.21 7 Vietnam 1.20 8 Mozambique 1.06 9 China 1.05 10 Kazakhstan 0.84

* Countries with relatively few Kaspersky Lab users (under 50,000) are excluded.
** Unique users whose computers were attacked by Trojan cryptors as a percentage of all unique users of Kaspersky Lab products in that country.

Most of the places in this rating are occupied by Asian countries. Bangladesh tops the list with 5.8%, followed by Uzbekistan (3.77%) and the newcomer Nepal (2.18%) in third. Pakistan (1.41%) came fourth, while China (1.05%) fell from sixth to ninth and Vietnam (1.20%) fell four places to seventh.

TOP 10 most widespread cryptor families

Name Verdicts %* 1 WannaCry Trojan-Ransom.Win32.Wanna 28.72% 2 (generic verdict) Trojan-Ransom.Win32.Phny 13.70% 3 GandCrab Trojan-Ransom.Win32.GandCrypt 12.31% 4 Cryakl Trojan-Ransom.Win32.Cryakl 9.30% 5 (generic verdict) Trojan-Ransom.Win32.Gen 2.99% 6 (generic verdict) Trojan-Ransom.Win32.Cryptor 2.58% 7 PolyRansom/VirLock Virus.Win32.PolyRansom 2.33% 8 Shade Trojan-Ransom.Win32.Shade 1,99% 9 Crysis Trojan-Ransom.Win32.Crusis 1.70% 10 (generic verdict) Trojan-Ransom.Win32.Encoder 1.70%

* Unique Kaspersky Lab users attacked by a specific family of Trojan cryptors as a percentage of all users attacked by Trojan cryptors.

The leading 10 places are increasingly occupied by generic verdicts, suggesting widespread cryptors are effectively detected by automatic intelligent systems. WannaCry (28.72%) still leads the way among specific cryptoware families. This quarter saw two new versions of the Trojan GandCrab (12.31%) emerge, meaning it remained in the most widespread ransomware rating. Among the old-timers that remained in the TOP 10 were PolyRansom, Cryakl, Shade, and Crysis, while Cerber and Purgen failed to gain much distribution this quarter.

Cryptominers

As we already reported in Ransomware and malicious cryptominers in 2016-2018, ransomware is gradually declining and being replaced with cryptocurrency miners. Therefore, this year we decided to start publishing quarterly reports on the status of this type of threat. At the same time, we began using a broader range of verdicts as a basis for collecting statistics on miners, so the statistics in this year’s quarterly reports may not be consistent with the data from our earlier publications.

Statistics Number of new modifications

In Q3 2018, Kaspersky Lab solutions detected 31,991 new modifications of miners.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Number of new miner modifications, Q3 2018 (download)

Number of users attacked by cryptominers

In Q3, Kaspersky Lab products detected mining programs on the computers of 1,787,994 KSN users around the world.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Number of unique users attacked by cryptominers, Q3 2018 (download)

Cryptomining activity in September was comparable to that of June 2018, though we observed an overall downward trend in Q3.

Geography of attacks

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Geography of cryptominers, Q3 2018 (download)

TOP 10 countries by percentage of attacked users

Country* %** 1 Afghanistan 16.85% 2 Uzbekistan 14.23% 3 Kazakhstan 10.17% 4 Belarus 9.73% 5 Vietnam 8.96% 6 Indonesia 8.80% 7 Mozambique 8.50% 8 Ukraine 7.60% 9 Tanzania 7.51% 10 Azerbaijan 7.13%

* Countries with relatively few Kaspersky Lab product users (under 50,000) are excluded.
** Unique Kaspersky Lab users whose computers were targeted by miners as a percentage of all unique users of Kaspersky Lab products in the country.

Vulnerable apps used by cybercriminals

The distribution of platforms most often targeted by exploits showed very little change from Q2. Microsoft Office applications (70%) are still the most frequently targeted – five times more than web browsers, the second most attacked platform.

Although quite some time has passed since security patches were released for the two vulnerabilities most often used in cyberattacks – CVE-2017-11882 and CVE-2018-0802 – the exploits targeting the Equation Editor component still remain the most popular for sending malicious spam messages.

An exploit targeting the vulnerability CVE-2018-8373 in the VBScript engine (which was patched in late August) was detected in the wild and affected Internet Explorer 9–11. However, we are currently observing only limited use of this vulnerability by cybercriminals. This is most probably due to Internet Explorer not being very popular, as well as the fact that VBScript execution is disabled by default in recent versions of Windows 10.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Distribution of exploits used by cybercriminals, by type of attacked application, Q3 2018 (download)

Q3 was also marked by the emergence of two atypical 0-day vulnerabilities – CVE-2018-8414 and CVE-2018-8440. They are peculiar because information about the existence of these vulnerabilities, along with detailed descriptions and all the files required to reproduce them, was leaked to the public domain long before official patches were released for them.

In the case of CVE-2018-8414, an article was published back in June with a detailed description of how SettingContent-ms files can be used to execute arbitrary code in Windows. However, the security patch to fix this vulnerability was only released in Q3, one month after the article became publicly available and active exploitation of the vulnerability had already began. The researchers who described this technique reported it to Microsoft, but initially it was not recognized as a vulnerability requiring a patch. Microsoft reconsidered after cybercriminals began actively using these files to deliver malicious payloads, and a patch was released on July 14. According to KSN statistics, the SettingContent-ms files didn’t gain much popularity among cybercriminals, and after the security patch was released, their use ceased altogether.

Another interesting case was the CVE-2018-8440 security breach. Just like in the case above, all the information required for reproduction was deliberately published by a researcher, and threat actors naturally took advantage. CVE-2018-8440 is a privilege-escalation vulnerability, allowing an attacker to escalate their privilege in the system to the highest level – System. The vulnerability is based on how Windows processes a task scheduler advanced local procedure call (ALPC). The vulnerable ALPC procedure makes it possible to change the discretionary access control list (DACL) for files located in a directory that doesn’t require special privileges to access. To escalate privileges, the attacker exploits the vulnerability in the ALPC to change access rights to a system file, and then that system file is overwritten by an unprivileged user.

Attacks via web resources

The statistics in this chapter are based on Web Anti-Virus, which protects users when malicious objects are downloaded from malicious/infected web pages. Malicious websites are created by cybercriminals, while web resources with user-created content (for example, forums), as well as hacked legitimate resources, can be infected.

Countries where online resources are seeded with malware

The following statistics are based on the physical location of the online resources used in attacks and blocked by our antivirus components (web pages containing redirects to exploits, sites containing exploits and other malware, botnet command centers, etc.). Any unique host could be the source of one or more web attacks. In order to determine the geographical source of web-based attacks, domain names are matched against their actual domain IP addresses, and then the geographical location of a specific IP address (GEOIP) is established.

In the third quarter of 2018, Kaspersky Lab solutions blocked 947,027,517 attacks launched from web resources located in 203 countries around the world. 246,695,333 unique URLs were recognized as malicious by web antivirus components.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Distribution of web attack sources by country, Q3 2018 (download)

In Q3, the USA (52.81%) was home to most sources of web attacks. Overall, the leading four sources of web attacks remained unchanged from Q2: the USA is followed by the Netherlands (16.26%), Germany (6.94%) and France (4.4%).

Countries where users faced the greatest risk of online infection

To assess the risk of online infection faced by users in different countries, we calculated the percentage of Kaspersky Lab users on whose computers Web Anti-Virus was triggered in each country during the quarter. The resulting data provides an indication of the aggressiveness of the environment in which computers operate in different countries.

This rating only includes attacks by malware-class malicious programs; it does not include Web Anti-Virus detections of potentially dangerous or unwanted programs such as RiskTool or adware.

Country* %** 1 Venezuela 35.88 2 Albania 32.48 3 Algeria 32.41 4 Belarus 31.08 5 Armenia 29.16 6 Ukraine 28.67 7 Moldova 28.64 8 Azerbaijan 26.67 9 Kyrgyzstan 25.80 10 Serbia 25.38 11 Mauritania 24.89 12 Indonesia 24.68 13 Romania 24.56 14 Qatar 23.99 15 Kazakhstan 23.93 16 Philippines 23.84 17 Lithuania 23.70 18 Djibouti 23.70 19 Latvia 23.09 20 Honduras 22.97

* Countries with relatively few Kaspersky Lab users (under 10,000) are excluded.
** Unique users targeted by malware-class attacks as a percentage of all unique users of Kaspersky Lab products in the country.

On average, 18.92% of internet users’ computers worldwide experienced at least one malware-class web attack.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Geography of malicious web attacks in Q3 2018 (download)

Local threats

Local infection statistics for user computers are an important indicator: they reflect threats that have penetrated computer systems by infecting files or via removable media, or initially got on the computer in an encrypted format (for example, programs integrated in complex installers, encrypted files, etc.).

Data in this section is based on analyzing statistics produced by antivirus scans of files on the hard drive at the moment they were created or accessed, and the results of scanning removable storage media. Analysis takes account of the malicious programs identified on user computers or on removable media connected to computers – flash drives, camera memory cards, phones and external hard drives.

In Q3 2018, Kaspersky Lab’s file antivirus detected 239,177,356 unique malicious and potentially unwanted objects.

Countries where users faced the highest risk of local infection

For each country, we calculated the percentage of Kaspersky Lab product users on whose computers File Anti-Virus was triggered during the reporting period. These statistics reflect the level of personal computer infection in different countries.

The rating includes only malware-class attacks. It does not include File Anti-Virus detections of potentially dangerous or unwanted programs such as RiskTool or adware.

Country* %** 1 Uzbekistan 54.93 2 Afghanistan 54.15 3 Yemen 52.12 4 Turkmenistan 49.61 5 Tajikistan 49.05 6 Laos 47.93 7 Syria 47.45 8 Vietnam 46.07 9 Bangladesh 45.93 10 Sudan 45.30 11 Ethiopia 45.17 12 Myanmar 44.61 13 Mozambique 42.65 14 Kyrgyzstan 42.38 15 Iraq 42.25 16 Rwanda 42.06 17 Algeria 41.95 18 Cameroon 40.98 19 Malawi 40.70 20 Belarus 40.66

* Countries with relatively few Kaspersky Lab users (under 10,000) are excluded.
** Unique users on whose computers malware-class local threats were blocked, as a percentage of all unique users of Kaspersky Lab products in the country.

!function(e,t,n,s){var i="InfogramEmbeds",o=e.getElementsByTagName(t)[0],d=/^http:/.test(e.location)?"http:":"https:";if(/^\/{2}/.test(s)&&(s=d+s),window[i]&&window[i].initialized)window[i].process&&window[i].process();else if(!e.getElementById(n)){var a=e.createElement(t);a.async=1,a.id=n,a.src=s,o.parentNode.insertBefore(a,o)}}(document,"script","infogram-async","https://e.infogram.com/js/dist/embed-loader-min.js");

Geography of malicious web attacks in Q3 2018 (download)

On average, 22.53% of computers globally faced at least one malware-class local threat in Q3.

IT threat evolution Q3 2018

Kaspersky Securelist - 12 Listopad, 2018 - 11:00

Targeted attacks and malware campaigns Lazarus targets cryptocurrency exchange

Lazarus is a well-established threat actor that has conducted cyber-espionage and cybersabotage campaigns since at least 2009. In recent years, the group has launched campaigns against financial organizations around the globe. In August we reported that the group had successfully compromised several banks and infiltrated a number of global cryptocurrency exchanges and fintech companies. While assisting with an incident response operation, we learned that the victim had been infected with the help of a Trojanized cryptocurrency trading application that had been recommended to the company over email.

An unsuspecting employee had downloaded a third-party application from a legitimate looking website, infecting their computer with malware known as Fallchill, an old tool that Lazarus has recently started using again.

It seems as though Lazarus has found an elaborate way to create a legitimate looking site and inject a malicious payload into a ‘legitimate looking’ software update mechanism – in this case, creating a fake supply chain rather than compromising a real one. At any rate, the success of the Lazarus group in compromising supply chains suggests that it will continue to exploit this method of attack.

The attackers went the extra mile and developed malware for non-Windows platforms – they included a Mac OS version and the website suggests that a Linux version is coming soon. This is probably the first time that we’ve seen this APT group using malware for Mac OS. It would seem that in the chase after advanced users, software developers from supply chains and some high-profile targets, threat actors are forced to develop Mac OS malware tools. The fact that the Lazarus group has expanded its list of targeted operating systems should be a wake-up call for users of non-Windows platforms.

This campaign should be a lesson to all of us and a warning to businesses relying on third-party software. Do not automatically trust the code running on your systems. Neither a good-looking website, nor a solid company profile, nor digital certificates guarantee the absence of backdoors. Trust has to be earned and proven.

You can read our Operation AppleJeus report here.

LuckyMouse

Since March 2018, we have found several infections where a previously unknown Trojan was injected into the ‘lsass.exe’ system process memory. These implants were injected by the digitally signed 32- and 64-bit network filtering driver NDISProxy. Interestingly, this driver is signed with a digital certificate that belongs to the Chinese company LeagSoft, a developer of information security software based in Shenzhen, Guangdong. We informed the company about the issue via CN-CERT.

The campaign targeted Central Asian government organizations and we believe the attack was linked to a high-level meeting in the region. We believe that the Chinese-speaking threat actor LuckyMouse is responsible for this campaign. The choice of the Earthworm tunneler used in the attack is typical for Chinese-speaking actors. Also, one of the commands used by the attackers (“-s rssocks -d 103.75.190[.]28 -e 443”) creates a tunnel to a previously known LuckyMouse command-and-control (C2) server. The choice of victims in this campaign also aligns with the previous interests shown by this threat actor.

The malware consists of three modules: a custom C++ installer, the NDISProxy network filtering driver and a C++ Trojan:

We have not seen any indications of spear phishing or watering hole activity. We think the attackers spread their infectors through networks that were already compromised.

The Trojan is a full-featured RAT capable of executing common tasks such as command execution, and downloading and uploading files. The attackers use it to gather a target’s data, make lateral movements and create SOCKS tunnels to their C2 using the Earthworm tunneler. This tool is publicly available and is popular among Chinese-speaking actors. Given that the Trojan is an HTTPS server itself, we believe that the SOCKS tunnel is used for targets without an external IP, so that the C2 is able to send commands.

You can read our LuckyMouse report here.

Financial fraud on an industrial scale

Usually, attacks on industrial enterprises are associated with cyber-espionage or sabotage. However, we recently discovered a phishing campaign designed to steal money from such organizations – primarily manufacturing companies.

The attackers use standard phishing techniques to lure their victims into clicking on infected attachments, using emails disguised as commercial offers and other financial documents. The criminals use legitimate remote administration applications – either TeamViewer or RMS (Remote Manipulator System). These programs were employed to gain access to the device, then scan for information on current purchases, and financial and accounting software. The attackers then use different ploys to steal company money – for example, by replacing the banking details in transactions. At the time we published our report, on August 1, we had seen infections on around 800 computers, spread across at least 400 organizations in a wide array of industries – including manufacturing, oil and gas, metallurgy, engineering, energy, construction, mining and logistics. The campaign has been ongoing since October 2017.

Our research highlights that even when threat actors use simple techniques and known malware they can successfully attack industrial companies by using social engineering tricks and hiding their code in target systems – using legitimate remote administration software to evade detection by antivirus solutions. Remote administration capabilities give criminals full control of compromised systems, so possible attack scenarios are not limited to the theft of money. In the process of attacking their targets, the attackers steal sensitive data belonging to target organizations, their partners and customers, carry out surreptitious video surveillance of company employees and record audio and video using devices connected to infected machines. While the series of attacks targets primarily Russian organizations, the same tactics and tools could be successfully used in attacks against industrial companies anywhere.

You can find out more about how attackers use remote administration tools to compromise their targets here, and an overview of attacks on ICS systems in the first half of 2018 here.

Malware stories Exploiting the digital gold rush

For some time now, we’ve been tracking a dramatic decline in ransomware and a massive growth in cryptocurrency mining. The number of people who encountered miners grew from 1,899,236 in 2016-17 to 2,735,611 in 2017-18. This is clearly because it’s a lucrative activity for cybercriminals – we estimate that mining botnets generated more than $7,000,000 in the second half of 2017. Not only are we seeing purpose-built cryptocurrency miners, we’re also seeing existing malware adding this functionality to their arsenal.

The ransomware Trojan Rakhni is a case in point. The malware loader chooses which component to install depending on the device. The malware, which we have seen in Russia, Kazakhstan, Ukraine, Germany and India, is distributed through spam mailings with malicious attachments. One of the samples we analysed masquerades as a financial document. When loaded, this appears to be a document viewer. The malware displays an error message explaining why nothing has opened. It then disables Windows Defender and installs forged digital certificates.


The malware checks to see if there are Bitcoin-related folders on the computer. If there are, it encrypts files and demands a ransom. If not, it installs a cryptocurrency miner. Finally, the malware tries to spread to other computers within the network. You can read our analysis of Rakhni here.

Cybercriminals don’t just use malware to cash in on the growing interest in cryptocurrencies; they also use established social engineering techniques to trick people out of their digital money. This includes sending links to phishing scams that mimic the authorization pages of popular crypto exchanges, to trick their victims into giving the scammers access to their crypto exchange account – and their money. In the first half of 2018, we saw 100,000 of these attempts to redirect people to such fake pages.

The same approach is used to gain access to online wallets, where the ‘hook’ is a warning that the victim will lose money if they don’t go through a formal identification process – the attackers, of course, harvest the details entered by the victim. This method works just as well where the victim is using an offline wallet stored on their computer.

Scammers also try to use the speculation around cryptocurrencies to trick people who don’t have a wallet: they lure them to fake crypto wallet sites, promising registration bonuses, including cryptocurrency. In some cases, they harvest personal data and redirect the victim to a legitimate site. In others, they open a real wallet for the victim, which is compromised from the outset. Online wallets and exchanges aren’t the only focus of the scammers; we have also seen spoof versions of services designed to facilitate transactions with digital coins stored on the victim’s computer.

Earlier this year, we provided some advice on choosing a crypto wallet.

We recently discovered a cryptocurrency miner, named PowerGhost, focused mainly on workstations and servers inside corporate networks – thereby hoping to commandeer the power of multiple processors in one fell swoop. It’s not uncommon to see cybercriminals infect clean software with a malicious miner to promote the spread of their malware. However, the creators of PowerGhost went further, using fileless methods to establish it in a compromised network. PowerGhost tries to log in to network user accounts using WMI (Windows Management Instrumentation), obtaining logins and passwords using the Mimikatz data extraction tool. The malware can also be distributed using the EternalBlue exploit (used last year in the WannaCry and ExPetr outbreaks). Once a device has been infected, PowerGhost tries to enhance its privileges using operating system vulnerabilities. Most of the attacks we’ve seen so far have been in India, Turkey, Brazil and Colombia.

KeyPass ransomware

The number of ransomware attacks has been declining in the last year or so. Nevertheless, this type of malware remains a problem and we continue to see the development of new ransomware families. Early in August, our anti-ransomware module started detecting the ‘KeyPass‘ Trojan. In just two days, we found this malware in more than 20 countries – Brazil and Vietnam were hardest hit, but we also found victims in Europe, Africa and the Far East.

We believe that the criminals behind KeyPass use fake installers that download the malware.

KeyPass encrypts all files, regardless of extension, on local drives and network shares that are accessible from the infected computer. It ignores some files located in directories that are hardcoded in the malware. Encrypted files are given the additional extension ‘KEYPASS’, and ransom notes called ‘!!!KEYPASS_DECRYPTION_INFO!!!.txt’ are saved in each directory containing encrypted files.

The creators of this Trojan implemented a very simplistic scheme. The malware uses the symmetric algorithm AES-256 in CFB mode with zero IV and the same 32-byte key for all files. The Trojan encrypts a maximum of 0x500000 bytes (~5 MB) of data at the start of each file.

Shortly after launch, the malware connects to its C2 server and obtains the encryption key and infection ID for the current victim. The data is transferred over plain HTTP in the JSON format. If the C2 is unavailable – for example, the infected computer is not connected to the internet, or the server is down – the malware uses a hardcoded key and ID. As a result, in the case of offline encryption, decryption of the victim’s files will be trivial.

Probably the most interesting feature of the KeyPass Trojan is its ability to take ‘manual control’. The Trojan contains a form that is hidden by default, but which can be shown after pressing a special button on the keyboard. This form allows the criminals to customize the encryption process by changing such parameters as the encryption key, the name of the ransom note, the text of the ransom, the victim ID, the extension of encrypted files and the list of directories to be excluded from encryption. This capability suggests that the criminals behind the Trojan might intend to use it in manual attacks.

Sextortion with a twist

Scams come in many forms, but the people behind them are always on the lookout for ways to lend credibility to the scam and maximise their opportunity to make money. One recent ‘sextortion’ scam uses stolen passwords for this purpose. The victim receives an email message claiming that their computer has been compromised and that the attacker has recorded a video of them watching pornographic material. The attackers threaten to send a copy of the video to the victim’s contacts unless they pay a ransom within 24 hours. The ransom demand is $1,400, payable in bitcoins.

The scammer includes a legitimate password in the message, in a bid to convince the victim that they have indeed been compromised. It seems that the passwords used are real, although in some cases at least they are very old. The passwords were probably obtained in an underground market and came from an earlier data breach.

The hunt for corporate passwords

It’s not just individuals who are targeted by phishing attacks – starting from early July, we saw malicious spam activity targeting corporate mailboxes. The messages contained an attachment with an .ISO extension that we detect as Loki Bot. The objective of the malware is to steal passwords from browsers, messaging applications, mail and FTP clients, and cryptocurrency wallets, and then to forward the data to the criminals behind the attacks.

The messages are diverse in nature. They include fake notifications from well-known companies:

Or fake orders or offers:

The scammers pass off malicious files as financial documents: invoices, transfers, payments, etc. This is a fairly popular malicious spamming technique, with the message body usually consisting of no more than a few lines and the subject mentioning the fake attachment.

Each year we see an increase in spam attacks on the corporate sector aimed at obtaining confidential corporate information: intellectual property, authentication data, databases, bank accounts, etc. That’s why it’s essential for corporate security strategy to include both technical protection and staff education – to stop them becoming the entry-point for a cyberattack.

Botnets: the big picture

Spam mailshots with links to malware, and bots downloading other malware, are just two botnet deployment scenarios. The choice of payload is limited only by the imagination of the botnet operator or their customers. It might be ransomware, a banker, a miner, a backdoor, etc. Every day we intercept numerous file download commands sent to bots of various types and families. We recently presented the results of our analysis of botnet activity for H2 2017 and H1 2018.

Here are the main trends that we identified by analyzing the files downloaded by bots:

  • The share of miners in bot-distributed files is increasing, as cybercriminals have begun to view botnets as a tool for cryptocurrency mining.
  • The number of downloaded droppers is also on the rise, reflecting the fact that attacks are multi-stage and growing in complexity.
  • The share of banking Trojans among bot-downloaded files in 2018 decreased, but it’s too soon to speak of an overall reduction in number, since they are often delivered by droppers.
  • Increasingly, botnets are leased according to the needs of the customer, so in many cases it is difficult to pinpoint the ‘specialization’ of the botnet.
Using USB devices to spread malware

USB devices, which have been around for almost 20 years, offer an easy and convenient way to store and transfer digital files between computers that are not directly connected to each other or to the internet. This capability has been exploited by cyberthreat actors – most notably in the case of the state-sponsored threat Stuxnet, which used USB devices to inject malware into the network of an Iranian nuclear facility.

These days the use of USB devices as a business tool is declining, and there is greater awareness of the security risks associated with them. Nevertheless, millions of USB devices are still produced for use at home, in businesses and in marketing promotion campaigns such as trade show giveaways. So they remain a target for attackers.

Kaspersky Lab data for 2017 showed that one in four people worldwide were affected by a local cyber-incident, i.e. one not related to the internet. These attacks are detected directly on a victim’s computer and include infections caused by removable media such as USB devices.

We recently published a review of the current cyberthreat landscape for removable media, particularly USBs, and offered advice and recommendations for protecting these little devices and the data they carry.

Here is a summary of our findings.

  • USB devices and other removable media have been used to spread cryptocurrency mining software since at least 2015. Some victims were found to have been carrying the infection for years.
  • The rate of detection for the most popular bitcoin miner, Trojan.Win64.Miner.all, is growing by around one-sixth year-on-year.
  • Every tenth person infected via removable media in 2018 was targeted with this cryptocurrency miner: around 9.22% – up from 6.7% in 2017 and 4.2% in 2016.
  • Other malware spread through removable media includes the Windows LNK family of Trojans, which has been among the top three USB threats detected since at least 2016.
  • The Stuxnet exploit, CVE-2010-2568, remains one of the top 10 malicious exploits spread via removable media.
  • Emerging markets are the most vulnerable to malicious infection spread by removable media – with Asia, Africa and South America among the most affected – but isolated hits were also detected in countries in Europe and North America.
  • Dark Tequila, a complex banking malware reported in August 2018 has been claiming consumer and corporate victims in Mexico since at least 2013, with the infection spreading mainly through USB devices.
New trends in the world of IoT threats

The use of smart devices is increasing. Some forecasts suggest that by 2020 the number of smart devices will exceed the world’s population several times over. Yet manufacturers still don’t prioritize security: there are no reminders to change the default password during initial setup or notifications about the release of new firmware versions, and the updating process itself can be complex for the average consumer. This makes IoT devices a prime target for cybercriminals. Easier to infect than PCs, they often play an important role in the home infrastructure: some manage internet traffic, others shoot video footage and still others control domestic devices – for example, air conditioning.

Malware for smart devices is increasing not only in quantity but also quality. More and more exploits are being weaponized by cybercriminals, and infected devices are used to launch DDoS attacks, to steal personal data and to mine cryptocurrency.

You can read our report on IoT threats here, including tips on how to reduce the risk of smart devices being infected.

A look at the Asacub mobile banking Trojan

The first version of Asacub, which we saw in June 2015, was a basic phishing app: it was able to send a list of the victim’s apps, browser history and contact list to a remote C2 server, send SMS messages to a specific phone number and turn off the screen on demand. This mobile Trojan has evolved since then, off the back of a large-scale distribution campaign by its creators in spring and summer 2017), helping it to claim top spot in last year’s ranking of mobile banking Trojans – out-performing other families such as Svpeng and Faketoken. The Trojan has claimed victims in a number of countries, but the latest version steals money from owners of Android devices connected to the mobile banking service of one of Russia’s largest banks.

The malware is spread via an SMS messages containing a link and an offer to view a photo or MMS message. The link directs the victim to a web page containing a similar sentence and a button for downloading the Trojan APK file to the device.

Asacub masquerades as an MMS app or a client of a popular free ads service.

Once installed, the Trojan starts to communicate with the C2 server. Data is transferred in JSON format and includes information about the victim’s device – smartphone model, operating system, mobile operator and Trojan version.

Asacub is able to withdraw funds from a bank card linked to the phone by sending an SMS for the transfer of funds to another account using the number of the card or mobile phone. Moreover, the Trojan intercepts SMS messages from the bank that contain one-time passwords and information about the balance of the linked bank card. Some versions of the Trojan can autonomously retrieve confirmation codes from such SMS messages and send them to the required number. What’s more, the victim can’t subsequently check the balance via mobile banking or change any settings, because after receiving a command with the code 40, the Trojan prevents the banking app from running on the phone.

You can read more here.

BusyGasper – the unfriendly spy

Early in 2018, our mobile intruder detection technology was triggered by a suspicious Android sample that turned out to belong to a new spyware family that we named BusyGasper. The malware isn’t sophisticated, but it does demonstrate some unusual features for this type of threat. BusyGasper is a unique spy implant with stand-out features such as device sensor listeners, including motion detectors that have been implemented with a degree of originality. It has an incredibly wide-ranging protocol – about 100 commands – and an ability to bypass the Doze battery saver. Like other modern Android spyware, it is capable of exfiltrating data from messaging applications – WhatsApp, Viber and Facebook. It also includes some keylogging tools – the malware processes every user tap, gathering its co-ordinates and calculating characters by matching given values with hardcoded ones.

The malware has a multi-component structure and can download a payload or updates from its C2 server, which happens to be an FTP server belonging to the free Russian web hosting service Ucoz. It is noteworthy that BusyGasper supports the IRC protocol, which is rarely seen among Android malware. In addition, it can log in to the attacker’s email inbox, parse emails in a special folder for commands and save any payloads to a device from email attachments.

There is a hidden menu for controlling the different implants that seems to have been created for manual operator control. To activate the menu, the operator needs to call the hardcoded number 9909 from an infected device.

The operator can use this interface to type any command. It also shows a current malware log.

This particular operation has been active since May. We have found no evidence of spear phishing or other common infection method. Some clues, such as the existence of a hidden menu mentioned above, suggest a manual installation method – the attackers gaining physical access to a victim’s device in order to install the malware. This would explain the number of victims – less than 10 in total, all located in the Russia. There are no similarities to commercial spyware products or to other known spyware variants, which suggests that BusyGasper is self-developed and used by a single threat actor. At the same time, the lack of encryption, use of a public FTP server and the low OPSEC level could indicate that less skilled attackers are behind the malware.

Thinking outside the [sand]box

One of the security principles built into the Android operating system is that all apps must be isolated from one another. Each app, along with its private files, operate in ‘sandbox’ that can’t be accessed by other apps. The point is to ensure that, even if a malicious app infiltrates your device, it’s unable to access data held by legitimate apps – for example, the username and password for your online banking app, or your message history. Unsurprisingly, hackers try to find ways to circumvent this protection mechanism.

In August, at DEF CON 26, Checkpoint researcher, Slava Makkaveev, discussed a new way of escaping the Android sandbox, dubbed a ‘Man-in-the-Disk’ attack.

Android also has a shared external storage, named External Storage. Apps must ask the device owner for permission to access this storage area – the privileges required are not normally considered dangerous, and nearly every app asks for them, so there is nothing suspicious about the request per se. External storage is used for lots of useful things, such as to exchange files or transfer files between a smartphone and a computer. However, external storage is also often used for temporarily storing data downloaded from the internet. The data is first written to the shared part of the disk, and then transferred to an isolated area that only that particular app can access. For example, an app may temporarily use the area to store supplementary modules that it installs to expand its functionality, additional content such as dictionaries, or updates.

The problem is that any app with read/write access to the external storage can gain access to the files and modify them, adding something malicious. In a real-life scenario, you may install a seemingly harmless app, such as a game, that may nevertheless infect your smartphone with malware. Slava Makkaveev gave several examples in his DEF CON presentation.

Google researchers discovered that the same method of attack could be applied to the Android version of the popular game, Fortnite. To download the game, players need to install a helper app first, and it is supposed to download the game files. However, using the Man-in-the-Disk attack, someone can trick the helper into installing a malicious app. Fortnite developers – Epic Games – have already issued a new version of the installer. So, if you’re a Fortnite player, use version 2.1.0 or later to be sure that you’re safe. If you have Fortnite already installed, uninstall it and then reinstall it from scratch using the new version.

How safe are car sharing apps?

There has been a growth in car sharing services in recent years. Such services clearly provide flexibility for people wanting to get around major cities. However, it raises the question of security – how safe is the personal information of people using these services?

The obvious reason why cybercriminals might be interested in car sharing is because they want to ride in someone’s car at someone else’s expense. But this could be the least likely scenario – it’s a crime that requires a physical point of presence and there are ways to cross check if the person who makes the booking is the one who gets the ride. The selling of hijacked accounts might be a more viable reason – driven by demand from those who don’t have a driving license or who have been refused registration by the car sharing service’s security team. Offers of this nature already exist on the market. In addition, if someone manages to hijack someone else’s car sharing account, they can track all their trips and steal things that are left behind in the car. Finally, a car that is fraudulently rented in somebody else’s name can always be driven to some remote place and cannibalized for spare parts, or used for criminal activity.

We tested 13 apps to see if their developers have considered security.

First, we checked to see if the apps could be launched on an Android device with root privileges and to see how well the code is obfuscated. This is important because most Android apps can be decompiled, their code modified (for example, so that user credentials are sent to a C2 server), then re-assembled, signed with a new certificate and uploaded again to an app store. An attacker on a rooted device can infiltrate the app’s process and gain access to authentication data.

Second, we checked to see if it was possible to create a username and password when using a service. Many services use a person’s phone number as their username. This is quite easy for cybercriminals to obtain as people often forget to hide it on social media, while car sharing customers can be identified on social media by their hashtags and photos.

Third, we looked at how the apps work with certificates and if cybercriminals have any chance of launching successful Man-in-the-Middle attacks. We also checked how easy it is to overlay an app’s interface with a fake authorization window.

The results of our tests were not encouraging. It’s clear that app developers don’t fully understand the current threats to mobile platforms – this is true for both the design stage and when creating the infrastructure. A good first step would be to expand the functionality for notifying customers of suspicious activities – only one service currently sends notifications to customers about attempts to log in to their account from a different device. The majority of the apps we analysed are poorly designed from a security standpoint and need to be improved. Moreover, many of the programs are not only very similar to each other but are actually based on the same code.

You can read our report here, including advice for customers of car sharing services and recommendations for developers of car sharing apps.

Pakistan Banks Not Breached, but Probably Skimmed

LinuxSecurity.com - 11 Listopad, 2018 - 14:23
LinuxSecurity.com: Pakistan's central bank has sought to quash reports that the country's lenders have been hacked en masse, following an apparent coordinated skimming campaign.
Kategorie: Hacking & Security

Meaner, more violent Stuxnet variant reportedly hits Iran

LinuxSecurity.com - 11 Listopad, 2018 - 12:36
LinuxSecurity.com: Stuxnet allegedly has a vicious little brother, or perhaps it is a malicious cousin; the complex malware was likened to being similar to Stuxnet but "more violent, more advanced and more sophisticated."
Kategorie: Hacking & Security

Autoři ransomwaru WannaCry mají novou zábavu. Infikují bankomaty a kradou peníze

Zive.cz - bezpečnost - 11 Listopad, 2018 - 08:00
Lazarusu, severokorejské hackerské skupině, která s největší pravděpodobností stála za ohromným útokem ransomwaru WannaCry, se podařilo ukrást v přepočtu stovky milionů korun z bankomatů po celé Asii a Africe. Vyplývá to ze zprávy, kterou zveřejnil výrobce antivirů Symantec. Hackerská skupina ...
Kategorie: Hacking & Security

Ransomware Still the Top Malware Threat During 2018 According to Europol

LinuxSecurity.com - 10 Listopad, 2018 - 09:42
LinuxSecurity.com: According to Europol's 2018 edition of the Internet Organised Crime Threat Assessment (IOCTA), ransomware maintains its supremacy as the key malware threat in most EU member states, while cryptojacking is becoming more and more prevalent.
Kategorie: Hacking & Security

Zero-day in popular WordPress plugin exploited in the wild to take over sites

LinuxSecurity.com - 10 Listopad, 2018 - 09:38
LinuxSecurity.com: Hackers have exploited --and are currently continuing to exploit-- a now-patched zero-day vulnerability in a popular WordPress plugin to install backdoors and take over sites.
Kategorie: Hacking & Security

Income, tax and immigration data stolen in Healthcare.gov breach

LinuxSecurity.com - 10 Listopad, 2018 - 09:33
LinuxSecurity.com: The Centers for Medicare and Medicaid Services (CMS) now has details about the data stolen in the breach of Healthcare.gov that occurred last month. According to the government agency, a significant amount of personal information including partial Social Security numbers, tax information and immigration status was compromised in the breach.
Kategorie: Hacking & Security
Syndikovat obsah